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ABSTRACT
Machine learning-based applications are increasingly prevalent in IoT devices. The power and storage constraints
of these devices make it particularly challenging to run modern neural networks, limiting the number of new
applications that can be deployed on an IoT system. A number of compression techniques have been proposed,
each with its own trade-offs. We propose a hybrid network which combines the strengths of current neural-
and tree-based learning techniques in conjunction with ternary quantization, and show a detailed analysis of
the associated model design space. Using this hybrid model we obtained a 11.1% reduction in the number of
computations, a 52.2% reduction in the model size, and a 30.6% reduction in the overall memory footprint over a
state-of-the-art keyword-spotting neural network, with negligible loss in accuracy.

1 INTRODUCTION

Machine learning algorithms, and neural networks (NNs) in
particular, are increasingly deployed in Internet-of-Things
(IoT) devices. Popular applications include speech inter-
faces in smart-home devices, predictive maintenance for
commercial and industrial machines, health-monitoring in
wearables, etc. However, due to the energy, power, storage,
and compute limitations of highly-constrained IoT devices,
they are frequently limited to simplistic tasks, while more so-
phisticated requests are off-loaded to a more capable device
or to a server. In addition to being computationally con-
strained, IoT devices frequently have very little available
SRAM, tend to be “always-on”, and are often connected to
constrained power sources. Because of these constraints, re-
ducing the computation and storage required by ML models
for IoT applications is of paramount importance in order to
ensure a longer battery life.

To enable this computation and size compression of NN
models, one particularly effective technique has been the
use of depthwise-separable (DS) convolutional layers. We
see these layers being used in a large, image classification
application (Howard et al., 2017) and also on a ubiquitous
keyword-spotting application (Zhang et al., 2017), show-
ing state-of-the-art or near-state-of-the-art accuracy in both
cases.

While DS convolutional layers have been transformative,

1Arm ML Research Lab. Correspondence to: Dibakar Gope
<dibakar.gope@arm.com>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

even further compression is still valuable in order to target
the most constrained microcontrollers or to make a wider
range of applications available on IoT devices. Recent work
has shown that this might be possible through the use of
binary- and ternary-weight networks (Rastegari et al., 2016;
Alemdar et al., 2016; Li & Liu, 2016; Tschannen et al.,
2018). In such networks, multiplications are replaced with
additions, relying on binary (-1,1) or ternary (-1,0,1) weight
matrices. This enables more energy-efficient and faster net-
work architectures with fewer expensive multiplications but
at the cost of modest to significant drop in prediction accu-
racy when compared to their full-precision counterparts. Re-
cent work on StrassenNets (Tschannen et al., 2018) presents
a more mathematically profound way to approximate matrix
multiplication computation (and, in turn, convolutions) us-
ing mostly ternary weights and a few full-precision weights.
It demonstrates no loss in predictive performance when
compared to full-precision models. The effectiveness of
StrassenNets is quite variable, however, depending on the
neural network architecture. We observe, for example, that
while strassenifying is effective in reducing the model size of
DS convolutional layers, this might come with a prohibitive
increase in the number of addition operations, reducing the
energy efficiency of neural network inference.

The interest in reducing complexity has also expanded be-
yond neural networks. Recent research around tree-based
learning algorithms has shown immense potential to perform
classification and regression in the IoT setting with a sig-
nificantly lower computation and storage budget than their
neural counterparts, while maintaining acceptable model
accuracy. More specifically, Bonsai decision trees (Kumar
et al., 2017) make this possible by learning a single, shal-
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low and sparse tree to reduce model size but with powerful
nodes for accurate prediction. It uses more powerful branch-
ing functions than the axis-aligned hyperplanes in standard
decision trees. This is coupled with non-linear predictions
made by internal and leaf nodes on a single, shallow deci-
sion tree learned in a low-dimensional space. Combining
these ideas allows Bonsai trees to learn complex non-linear
decision boundaries using a compact representation. While
the results in (Kumar et al., 2017) show promising results
for smaller applications, our observations were that the tech-
niques do not scale when extended to a more complex use-
case, showing poor prediction accuracy even with a large
model footprint.

We now, therefore, have two ways of compressing models,
each with its own advantages and limitations:

• StrassenNets is effective at reducing the size of a neural
network model but at a potentially significant cost of
more addition operations.

• Bonsai tree is effective at reducing the number of oper-
ations for simple models but cannot easily be extended
to larger models.

Motivated by these observations, we propose a hybrid net-
work architecture capable of giving start-of-the-art accuracy
levels, while requiring a fraction of the model parameters
and considerably fewer operations per inference. The hybrid
architecture makes this possible by leveraging a few neural
DS convolutional layers for feature extraction and then re-
lying on a compute-efficient, shallow Bonsai decision tree
to perform the classification. It then applies StrassenNets
over the overall neural-tree network to reduce its memory
footprint significantly thus enabling a compact compute-
efficient architecture. We apply this hybrid architecture to
a representative IoT application keyword-spotting. The hy-
brid network achieves a 98.89% reduction in multiplications,
a 12.22% reduction in additions (overall 11.1% reduction
in number of operations), a 52.2% reduction in model size,
and a 30.6% reduction in overall memory footprint over
a state-of-the-art keyword-spotting neural model. The hy-
brid network accomplishes this with a very minimal loss
in accuracy of 0.27%. The final network is well within the
constrained compute budget of typical microcontrollers.

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the incentives behind this hybrid net-
work architecture for microcontrollers and provides a brief
overview of the neural and tree-based learning algorithms
that it attempts to hybridize along with our observations of
applying them to the keyword-spotting application. Failing
to find a good balance between accuracy and computation
costs shifts our focus towards designing a hybrid neural-tree
network. Section 3 describes our hybrid network. Section 4

presents results. Section 5 compares our hybrid network
against prior works and and Section 6 concludes the paper.

2 MODEL COMPRESSION LIMITATIONS
FOR AN IOT APPLICATION

2.1 StrassenNets

Given two 2× 2 matrices, Strassen’s matrix multiplication
algorithm computes their product using 7 multiplications
instead of the 8 required with a naı̈ve implementation of
matrix multiplication. It essentially converts the matrix
multiplication operation to a 2-layer sum-product network
(SPN) computation as shown below:

vec(C) =Wc[(Wbvec(B))� (Wavec(A))] (1)

Wa, Wb ∈ Kr×n2

and Wc ∈ Kn2×r are ternary matrices
with K ∈ {−1, 0, 1}, vec(A) and vec(B) are the vectoriza-
tion of the two input square matrices A, B ∈ Rn×n; and
vec(C) represents the vectorized form of the productA×B.
� denotes the element-wise product. The (Wbvec(B)) and
(Wavec(A)) of the SPN compute r intermediate factors
each from additions, and/or subtractions of elements of A
and B realized by the two associated ternary matrices Wa

and Wb respectively. The two generated r-length intermedi-
ate factors are then element-wise multiplied to produce the
r-length (Wbvec(B))� (Wavec(A)). The outmost ternary
matrix Wc later combines the r elements of the product
(Wbvec(B)) � (Wavec(A)) in different ways to generate
the vectorized form of product matrix C. Therefore, the
width of the hidden layer of the SPN r decides the number
of multiplications required for the Strassen’s matrix multi-
plication algorithm. For example, given two 2× 2 matrices,
ternary matricesWa andWb with sizes of 7×4 can multiply
them using 7 multiplications and 36 additions. It is impor-
tant to note that Strasssen’s algorithm requires a hidden
layer with 7 units here to compute the exact product matrix
that a naı̈ve matrix multiplication algorithm can obtain using
8 multiplications.

Building on top of Strassen’s matrix multiplication algo-
rithm, the StrassenNets work (Tschannen et al., 2018) in-
stead realizes approximate matrix multiplications in DNN
layers using fewer hidden layer units compared to the
standard Strassen’s algorithm to achieve the exact prod-
uct matrix. StrassenNets makes this possible by training a
SPN-based DNN framework end-to-end to learn the ternary
weight matrices from the training data. The learned ternary
weight matrices can then approximate the otherwise exact
matrix multiplications of the DNN layers with significantly
fewer multiplications than Strassen’s algorithm. The approx-
imate transforms realized by the SPNs, adapted to the DNN
architecture and application data under consideration, can
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Table 1. Test accuracy along with the number of multiplications,
additions, operations and model size for state-of-the-art DS-CNN
and strassenified DS-CNN (ST-DS-CNN) on KWS. r is the hidden
layer width of a strassenified convolution layer, cout is the number
of output channels of the corresponding convolution layer.

NETWORK ACC. MULS, MACS OPS MODEL
(%) ADDS SIZE

DS-CNN 94.4 - 2.7M 2.7M 22.07KB
ST-DS-CNN 93.18 0.05M, 2.85M - 2.9M 16.23KB
(r = 0.5cout )
ST-DS-CNN 94.09 0.06M, 4.09M - 4.15M 19.26KB
(r = 0.75cout )
ST-DS-CNN 94.03 0.07M, 5.32M - 5.39M 22.29KB
(r = cout )
ST-DS-CNN 94.74 0.11M, 10.25M - 10.36M 34.42KB
(r = 2cout )

enable precise control over the number of multiplications
and additions required per inference, creating an opportu-
nity to tune DNN models to strike an optimal balance be-
tween accuracy and computational complexity. The success
of StrassenNets in achieving significant compression for
3× 3 convolutions (Tschannen et al., 2018) and increasing
visibility of DS convolutions in resource-constrained IoT
networks (Zhang et al., 2017) inspired us to apply Strassen-
Nets over already compute-efficient IoT networks domi-
nated with DS layers to reduce their computational costs
and model size even further. Further compression of DS lay-
ers will not only enable more energy-efficient IoT networks
leading to longer lasting batteries, but also will open up the
opportunities for more complex IoT use-cases to fit in the
limited memory budget of tiny microcontrollers.

As a representative benchmark for exploring different com-
pression algorithms, we have chosen a keyword spot-
ting (KWS) model from (Zhang et al., 2017). The DS
convolution-based model (DS-CNN) shown in (Zhang et al.,
2017) has state-of-the-art accuracy on the realistic Google
speech commands dataset (Warden, 2018). Furthermore,
when compared to traditional CNN or other RNN ap-
proaches, the model size is smaller and the number of oper-
ations required per inference is fewer as well.

2.1.1 StrassenNets for KWS

We observe that although strassenifying DS convolution
layers reduces multiplications significantly as expected, it
increases additions considerably in order to achieve an ac-
curacy comparable to that of the state-of-the-art DS-CNN.
Table 1 captures our observation with strassenifying DS
layers of the uncompressed DS-CNN KWS model. Multi-
ply, addition, and multiply-accumulate (MAC) operations
typically incur similar execution latencies in modern mi-
croprocessors, but different models have different ratios of
these operations. They are, therefore, counted individually
and aggregated in the “Ops” column. The strassenified net-

work with the r = 0.75cout configuration incurs a negligible
loss in accuracy of 0.31% while reducing multiplications
by 97.7% but increasing additions by 51.4% (2.7M MACs
of DS-CNN vs. 0.06M multiplications and 4.09M addi-
tions of ST-DS-CNN with r = 0.75cout). That means the
strassenified network with r = 0.75cout configuration ac-
tually increases the number of total operations to 4.15M
when compared to 2.7M operations in the uncompressed
DS-CNN network. As shown in Table 1, a number of poten-
tial values for the hidden layer width (r) were explored and
a value of at least 0.75cout was needed to achieve a compa-
rable accuracy to that of the full-precision DS-CNN model.
Using fewer hidden units (r = 0.5cout) than this incurs an
accuracy loss of 1.22%, whereas wider strassenified hid-
den layers (r = 2cout) recover the negligible accuracy loss
of the r = 0.75cout configuration. For sufficiently large
r values, the strassenified network can even out-perform
the uncompressed DS-CNN model in accuracy, albeit with
a significant increase (about 280% for r = 2cout) in the
number of additions than the DS-CNN model.

2.1.2 Compute inefficiency of StrassenNets for models
with DS convolutions

It is important to note here that although the number of addi-
tions does increase marginally with strassenifying standard
3× 3 or 5× 5 convolutional layers (Tschannen et al., 2018),
that trend does not hold true with strassenifying DS layers.
This stems from the fact that 1× 1 pointwise convolutions
dominate the compute bandwidth of a neural network with
DS layers (Zhang et al., 2017; Howard et al., 2017) and
strassenifying a 1 × 1 pointwise convolution requires ex-
ecuting two equal-sized (for r = cout) 1 × 1 convolution
operations (with ternary weight filters) in place of the stan-
dard 1× 1 convolution. This results in a significant increase
in additions in comparison to the execution of the standard
1× 1 convolution. In contrast to that, a 3× 3 strassenified
convolution with r = cout instead requires executing a 3×3
convolution and a 1 × 1 convolution with ternary weight
filters, causing a marginal increase in additions compared to
the execution of the standard 3× 3 convolution (Tschannen
et al., 2018). This overhead of addition operations with
strassenified DS convolutions increases in proportion to the
width of the strassenified hidden layers, i.e. to the size of
the ternary convolution operations, as observed in Table 1.
As a result, a strassenified DS convolution layer may incur
enough overhead to offset the benefit of strassenifying a DS
convolution layer.

While (Tschannen et al., 2018) demonstrates better trade-
offs when strassenifying ResNet-18 architecture, this is not
likely to continue once a larger network dominated with
DS convolutions (e.g. MobileNets (Howard et al., 2017)) is
strassenified. (Tschannen et al., 2018) observes the ResNet-
18 architecture with strassenified 3 × 3 convolutions to
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achieve comparable accuracy to that of the uncompressed
ResNet-18 on the ImageNet dataset with r = 2cout con-
figuration while requiring a modest (29.63%) increase in
additions. A strassenified MobileNets with r = 2cout con-
figuration for the DS layers will give rise to about a 300%
increase in additions over the uncompressed MobileNets ar-
chitecture. This increase in computational costs associated
with strassenified DS convolutions in conjunction with the
high accuracy and low latency requirements of IoT appli-
cations call for a model architecture exploration that can
leverage the compute efficiency of DS layers and model
size reduction of strassenified convolutions owing to their
ternary weights while maintaining acceptable or no increase
in additions. As tree-based learning techniques from re-
cent work (Kumar et al., 2017) exhibit accuracy on par with
neural models while requiring significantly fewer MAC op-
erations, this motivates us to explore the model accuracy
and compute-efficiency of these tree-based techniques for
representative IoT applications.

2.2 Bonsai Decision Trees

Piece-wise axis-aligned decision boundaries coupled with
constant predictions at just the leaf nodes restrict the predic-
tion accuracy of typical tree models when compared to that
of their neural counterparts. Tree ensembles are commonly
used to improve the accuracy, but they can occupy too large
a memory footprint for typical microcontrollers. Recent
work on tree models attempt to learn more complex deci-
sion boundaries by moving away from learning axis-aligned
hyperplanes at internal nodes and constant predictors at the
leaves. Bonsai decision trees (Kumar et al., 2017) fall into
this paradigm. Using more powerful branching functions
than the axis-aligned hyperplanes of standard decision trees
in conjunction with non-linear prediction scores in both
internal and leaf nodes allows Bonsai to learn a single, shal-
low tree that can achieve accuracy on par with small neural-
based models. For a multi-class classification problem with
L targets, Bonsai learns matrices WD̂×L and VD̂×L at both
leaf and internal nodes so that each node now predicts a non-
linear prediction score W>Zx ◦ tanh(σV >Zx). Bonsai
reduces model size by projecting each D-dimensional input
feature vector x into a low D̂-dimensional space using a
projection matrix ZD̂×D in which the tree is learned. Once
an input feature is projected to a low-dimensional space,
Bonsai adds the individual node predictions along the path
traversed by the projected input to derive the overall predic-
tion. Owing to a single, shallow tree with powerful nodes
and branching functions learned in a low-dimensional space,
Bonsai can achieve impressive computation reduction over
a typical DNN, while preserving DNN-level accuracy for
very small models.

Table 2. Test accuracies for DS-CNN and Bonsai tree variants on
KWS. D̂ = projected dimension, T = depth of tree.

NETWORK ACC. (%) MACS OPS MODEL SIZE

DS-CNN 94.4 2.7M 2.7M 22.07KB
BONSAI (D̂=64, T=2) 80.20 0.02M 0.02M 140.75KB
BONSAI (D̂=64, T=4) 82.92 0.04M 0.04M 287.75KB
BONSAI (D̂=128, T=2) 81.56 0.04M 0.04M 281.5KB
BONSAI (D̂=128, T=4) 84.38 0.07M 0.07M 575.5KB

2.2.1 Bonsai tree for KWS

When applied to the KWS application, Bonsai shows poor
prediction accuracy even with a significantly large tree with
many internal and leaf nodes. As shown in Table 2, Bonsai
trees achieve poor accuracies, saturating at about 84%, even
when the tree architecture is scaled up with wider projection
layers, more tree nodes and trained for longer1. Furthermore,
a major fraction of the model size (e.g. 69.63% of Bonsai
tree with D̂=64 and T=2) is attributed to the fully-connected
(FC) layer used in projecting the incoming input data to
low-dimensional space. Clearly, weight quantization2 and
aggressive pruning will reduce the model size further, as
described in (Kumar et al., 2017), however it will not be
able to recover the significant accuracy loss of Bonsai trees
when compared to that of the neural models for KWS (e.g.
DS-CNN). It is worth emphasizing that although Bonsai
occupies a large memory footprint, its computational costs
are very low in comparison to those neural models.

2.2.2 The limitations of Bonsai trees for KWS

While (Kumar et al., 2017) shows the effectiveness of Bon-
sai trees for the applications they considered, our results
show that for more complex applications, there might be
a fundamental limitation in the expressiveness of Bonsai
trees. More specifically, the simple projection matrix that is
made of a FC layer in a Bonsai tree is likely not effective
in compressing KWS’s initial speech inputs to extract rich
useful features. This observation is further corroborated by
prior works (Zhang et al., 2017; Arik et al., 2017; Sainath
& Parada, 2015) on designing state-of-the-art neural net-
works for small-footprint KWS that leverages convolutional
layers instead to compress complex speech inputs of KWS
applications to extract a few rich, meaningful features.

Based on these results, we can conclude that StrassenNets
and Bonsai trees, while effective at reducing model com-
plexity for some models, have limitations when applied to
a representative IoT application. This motivates the use

1Bonsai trees in Table 2 are trained significantly longer than the
other networks in this work. The learning rate is initially chosen
as 0.001, and later gradually reduced after every 100 epochs.

2Each Bonsai tree weight in Table 2 requires 4 bytes to store.
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of a potential hybrid model - one that can use the feature
extraction capabilities of a convolutional network while also
reducing the amount of compute required for subsequent
classification of these features. This hybrid model proposed
in this paper exploits Bonsai tree’s strength as a compute-
efficient classifier given rich features and couples that with
StrassenNets to achieve significant reduction in model size.

3 HYBRID NEURAL-TREE
ARCHITECTURE

We propose a hybrid neural-tree architecture that can lever-
age a few convolutional layers to extract the minimal set
of necessary local features, and then can rely on power-
ful branching functions and non-linear Bonsai tree nodes
to find global correlation between features and to perform
the required classification. As the tree section of the hy-
brid network is comparatively compute-efficient in terms
of MAC operations, use of it to find the global interaction
between local features and classifying the voice commands
should result in an overall reduction of computational costs
compared to a neural-only state-of-the-art network for KWS
without compromising its accuracy. DS convolutional layers
are used in particular for feature extraction in the hybrid
network. Additionally, the matrix multiplications associated
with the entire hybrid network are strassenified to reduce
multiplications and the overall memory footprint to enable
a more compact network.

Architecture. Figure 1 shows the hybrid neural-tree ar-
chitecture optimized for KWS application with the corre-
sponding parameters. The raw time-domain speech signal
is converted to 2-D MFCC (Mel-frequency cepstral coeffi-
cients) inputs for succinct representation and efficient train-
ing. Speech features are first extracted from the MFCC
inputs by one standard convolutional layer followed by two
DS convolutional layers which greatly reduce dimension-
ality of the original speech signal. The low-dimensional
compressed speech features are then fed to a single depth
2 Bonsai tree with 3 internal and 4 leaf nodes to provide
global interaction and to identify the appropriate keyword
in the detected voice command.

Note that the branching functions of the tree’s internal
nodes output a probability to influence whether the low-
dimensional speech sample should be branched to a node’s
left or right child. During inference, non-linear prediction
scores are computed for all tree nodes regardless of the most
probable tree path traversed by the compressed sample. The
tree nodes from the least probable paths contribute insignifi-
cantly to the overall prediction score. Computing prediction
scores for all nodes certainly increases prediction costs. As
the hybrid network for KWS has a shallow depth 2 tree,
the incremental costs from computing prediction scores for
all nodes is marginal in comparison to the computational
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Figure 1. Hybrid neural-tree architecture.

costs of the overall hybrid network. However, evaluating
the entire tree ensures that the tree computation does not
incur any control-flow overhead in the processor from unpre-
dictable branching in internal nodes. This, in turn, results in
a more resource-efficient, data-parallel computation pattern
and a more efficient utilization of any available SIMD units.
For example, in Figure 1, a low-dimensional speech feature
sample D̂ finds the leftmost tree path most probable to tra-
verse and as a result the three tree nodes along the leftmost
path in the tree contribute the most to the overall prediction
score, even though the prediction scores for all tree nodes
are computed during inference.

End-to-end training. The three convolutional layers along
with all the tree nodes of the hybrid network are trained
jointly so as to maximize accuracy. A gradient-descent (GD)
based training algorithm is used to train the hybrid network
end-to-end. Note that the path traversed by a training point
in a standard decision tree is a sharply discontinuous func-
tion of parameters of internal branching nodes thereby mak-
ing gradient based techniques ineffective. In order to make
effective use of GD algorithm with a differentiable loss
function, the training of a Bonsai tree begins with smooth
activation functions of internal branching nodes to allow
points to traverse multiple paths in the tree. As training pro-
gresses, the activation functions of internal branching nodes
are tuned to ensure that points gradually start traversing at
most a single path.

Strassenified hybrid network. Finally, in order to reduce
the hybrid network’s memory footprint, we apply strasseni-
fied matrix multiplications to its convolution layers and tree
section to create the strassenified hybrid network. Note that
each of the tree nodes of the hybrid network learns two
matrices W and V to compute a non-linear prediction score.
Computation of this prediction scores at the tree nodes in-
volves matrix multiplications, which are strassenified as
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well. The hidden layer width (r) of the strassenified hybrid
network is set to 0.75cout for convolution layers(cout is the
number of output channels of a convolution layer), whereas
r for the tree nodes is set to the number of targets (L) of the
multi-class KWS classification problem.

Training a network with strassenified matrix multiplications
essentially involves learning ternary Wa, Wb, and Wc ma-
trices for each strassenified network layer. We employ the
training procedure described in the StrassenNets (Tschannen
et al., 2018) work to train the strassenified hybrid network.
Training of the strassenified hybrid network begins with
full precision Wa, Wb, and Wc. Once the network is suf-
ficiently trained with full-precision Wa, Wb, and Wc, the
elements of these three strassen matrices are quantized to
ensure ternary-valued weights in them and the training con-
tinues. Quantization converts the full-precision Wb to a
ternary-valued W t

b along with a scaling factor (Wb = scal-
ing factor * W t

b ). Wa and Wc are quantized the same way.
Once the training recovers the accuracy loss with quantized
strassen matrices, the three strassen matrices are fixed and
the scaling factors associated with them are absorbed by
full-precision vec(A) portion of strassenified matrix mul-
tiplication. Note that in the context of strassenified matrix
multiplications of a network layer, A is associated with the
weights or filters of the layer and B is associated with the
corresponding activations or feature maps. As a result, af-
ter training, Wa and vec(A) can be collapsed into a vector
â =Wavec(A), as they are both fixed during inference. We
follow the weight quantization procedure described in the
StrassenNets (Tschannen et al., 2018) work for quantizing
all strassen matrices of the hybrid network.

Furthermore, in order to recover any accuracy loss of the
hybrid network compressed with strassenified matrix com-
putations, knowledge distillation (KD) is exploited during
training, as described in (Tschannen et al., 2018)3. Using
KD, an uncompressed teacher network can transfer its pre-
diction ability to a compressed student network by navigat-
ing its training. We use the uncompressed hybrid network
as the teacher network and the compressed strassenified
network as the student network in this work.

In short, the strassenified hybrid neural-tree architecture es-
sentially combines the strengths of DS convolutions, Bonsai
trees, and strassenified matrix computations, with additional
strategies applied during training to improve the overall
performance, while keeping a small-footprint size.

3We apply KD while training the strassenified DS-CNN net-
works in Section 2 as well. The results reported for strassenified
networks in Table 1 are obtained using KD.

4 EXPERIMENTS AND RESULTS

Datasets. We evaluate the hybrid neural-tree architecture
on the Google speech commands dataset (Warden, 2018)
and compare it against the state-of-the-art DS-CNN (Zhang
et al., 2017), BinaryCmd (Fernndez-Marqus et al., 2018)
and other baseline network architectures for KWS from
literature (Arik et al., 2017; Sun et al., 2016; Sainath &
Parada, 2015; Chen et al., 2014) analysed in (Zhang et al.,
2017). The entire dataset consists of 65K different samples
of 1-second long audio clips of 30 keywords, collected from
thousands of different people. The length of each audio
clip is 1 second, which is sufficiently long to capture one
keyword. The corresponding 40 MFCC features are ob-
tained from a speech frame of length 40ms with a stride of
20ms, yielding an input dimensionality of 49× 10 features
for 1 second of audio. The different network architectures
are trained to classify the incoming audio into one of the
10 keywords - “Yes” “No” “Up” “Down” “Left” “Right”
“On” “Off” “Stop” “Go” along with “silence” (i.e. no word
spoken) and “unknown” word, which is the remaining 20
keywords from the dataset. The dataset is split into 80%
for training, 10% for validation and 10% for testing. Train-
ing samples are augmented by applying background noise
and random timing jitter to provide robustness against noise
and alignment errors. We follow the input data processing
procedure described in (Zhang et al., 2017) for training the
baseline and hybrid networks presented here.

Hybrid network training. We use the Adam optimization
algorithm to train the networks in the Tensorflow frame-
work (Abadi et al., 2016). We use multi-class hinge loss
to train the hybrid network4. The Adam optimizer with
hinge loss achieves marginally better accuracy for the hy-
brid network than with cross-entropy loss. The network
architectures are trained on the full training set and eval-
uated based on the classification accuracy on the test set.
With a batch size of 20, the hybrid network is trained for 135
epochs with initial learning rate of 0.001 and progressively
smaller learning rates after every 45 epochs. The training
time for the hybrid network is restricted to 135 epochs to
match against the epochs required in training the baseline
DS-CNN network.

Hybrid network evaluation. The resulting testing accu-
racy along with the model size and the number of multiplica-
tions, and additions in the matrix-multiplication operations
of the hybrid network is shown in Table 3 and compared
against prior works. The hybrid network achieves an accu-
racy of 94.54% when compared to DS-CNN’s accuracy of
94.4%, while reducing the number of operations by 44.4%.
The reduction in operations of the hybrid network stems

4We use hinge loss to train the baseline Bonsai trees in Sec-
tion 2.2.1, whereas we use standard cross-entropy loss to train the
strassenified DS-CNN networks in Section 2.1.1.
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Table 3. Comparison of hybrid neural-tree network (HybridNet)
against DS-CNN, the current state-of-the-art for KWS application,
and other baselines presented in (Zhang et al., 2017).

NETWORK ACC. (%) MACS OPS MODEL SIZE

DS-CNN 94.4 2.7M 2.7M 22.07KB
CRNN 94.0 1.5M 1.5M 73.7KB
GRU 93.5 1.9M 1.9M 76.3KB
LSTM 92.9 1.95M 1.95M 76.8KB
BASIC LSTM 92.0 2.95M 2.95M 60.9KB
CNN 91.6 2.5M 2.5M 67.6KB
DNN 84.6 0.08M 0.08M 77.8KB
HYBRIDNET 94.54 1.5M 1.5M 94.25KB

from its compute-efficient tree portion. Note that all the
baseline networks in Table 3 require 1 byte to store their
weights as opposed to the 4 bytes required to store the
weights of the uncompressed hybrid network. Consequently,
the uncompressed hybrid network requires a larger model
size of 94.25KB when compared to other baselines in Ta-
ble 3. Clearly, straightforward quantization of the weights
of the hybrid network to low-precision values will result
in reducing its model size. However, as discussed in this
work, we instead apply StrassenNets over the entire hybrid
network to reduce its full-precision (4 bytes) parameters and
resultant model size.

Strassenified hybrid network training. We begin by
training the strassenified hybrid network (ST-HybridNet)
with full-precision strassen matrices (Wa, Wb, and Wc) for
135 epochs. The learning rate is initially chosen as 0.001,
and later gradually reduced after every 45 epochs. We then
activate quantization for these strassen matrices and the
training continues. Finally, we fix the strassen matrices to
their learned ternary values and continue training for another
135 epochs to ensure that the scaling factors associated with
these matrices can be absorbed by full-precision vec(A)
portion of strassenified matrix multiplication.

Strassenified hybrid network evaluation. The testing
accuracy of the ST-HybridNet is shown in Table 4, along
with the reduction in the number of operations, and the
model size in comparison to the uncompressed hybrid net-
work. The ST-HybridNet achieves similar accuracy to that
of the uncompressed hybrid network and the baseline DS-
CNN while reducing the number of multiplications and
additions by 98.89% and 12.22%, respectively, over the
baseline DS-CNN network. Of particular note is that it
reduces the number of additions to about 2.37M when com-
pared to 4.09M additions of strassenified DS-CNN network
described in Section 2. This, in turn, results in fewer overall
operations, 2.4M, for the ST-HybridNet when compared
to 2.7M operations of the baseline DS-CNN and 4.15M
operations of the strassenified DS-CNN. This reduction in
operations is primarily attributed to strassenifying a few
(three) convolutional layers and a compute-efficient tree as
opposed to strassenifying all of the five convolutional layers

Table 4. Comparison of the strassenified hybrid neural-tree net-
work (ST-HybridNet) against the uncompressed hybrid network,
DS-CNN, and strassenified DS-CNN network (ST-DS-CNN) pre-
sented in Section 2.

NETWORK ACC. MULS, ADDS MACS OPS MODEL
(%) SIZE

DS-CNN 94.4 - 2.7M 2.7M 22.07KB
ST-DS-CNN 94.09 0.06M, 4.09M - 4.15M 19.26KB
(r = 0.75cout )
HYBRIDNET 94.54 - 1.5M 1.5M 94.25KB
ST-HYBRIDNET 94.51 0.03M, 2.37M - 2.4M 14.99KB
(WITHOUT KD)
ST-HYBRIDNET 94.41 0.03M, 2.37M - 2.4M 14.99KB
(WITH KD)

found in the baseline DS-CNN model. Owing to the ternary
weights matrices, the ST-HybridNet reduces the model size
to 14.99KB when compared to 22.07KB of the baseline
DS-CNN network thus enabling a 32.1% savings in model
size for KWS5. Furthermore, our ST-HybridNet does not
incur any accuracy loss over the baseline DS-CNN while
achieving reduction in computational costs and model size.
The use of KD in training the ST-HybridNet does not result
in any tangible change in accuracy.

We perform exhaustive search of feature extraction hy-
perparameters and model hyperparameters to develop ST-
HybridNet. Table 5 summarizes the hyperparameters of
different configurations of ST-HybridNet along with their
impact on accuracy and computational complexity. A ST-
HybridNet with two convolutional layers (one standard con-
volutional layer followed by one DS convolutional layer)
and a single depth 2 Bonsai tree with 7 nodes (3 internal
and 4 leaf nodes) reduces computational requirements of a
KWS model but at the cost of more than 3% accuracy loss
in comparison to the baseline DS-CNN network. Even a
ST-HybridNet with three convolutional layers and a depth
1 Bonsai tree with 3 nodes (1 internal and 2 leaf nodes)
cannot preserve the baseline accuracy. This hyperparameter
search subsequently results in designing the ST-HybridNet
with three convolutional layers and a depth 2 Bonsai tree
for KWS application in this work.

As ternary Wa and full-precision vec(A) weights of the
ST-HybridNet are both fixed during inference, they are
learned jointly as collapsed full-precision â (Wavec(A))
from scratch, and these full-precision â weights along with
the bias parameters occupy 7.34KB out of 14.99KB of the
ST-HybridNet. The limited memory of microcontroller sys-
tems motivates further reducing the numerical precision of
the entire network model, including the inputs, outputs, ac-
tivations, and remaining full-precision weights, to minimize

5During inference, the batch normalization parameters (beta,
moving mean, and moving variance) are folded either into the
full-precision bias parameters of the preceding convolution lay-
ers and/or into the full-precision vec(A) parameters of the ST-
HybridNet.
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Table 5. Different network hyperparameters of ST-HybridNet and
their impact on accuracy and number of operations. D = depth of
tree, N = number of tree nodes.

NETWORK MODEL ACC. (%) OPS
HYPERPARAMETERS

ST-HYBRIDNET 2 CONVOLUTIONAL 91.1 1.53M
LAYERS, D=2, N=7

ST-HYBRIDNET 3 CONVOLUTIONAL 93.15 2.39M
LAYERS, D=1, N=3

ST-HYBRIDNET 3 CONVOLUTIONAL 94.51 2.4M
LAYERS, D=2, N=7

the overall memory footprint during inference.

Quantization of activations and remaining full-
precision weights of strassenified hybrid network.
Quantization can convert these high-precision floating-point
weights and activations of ST-HybridNet to a low-precision
fixed-point format more amenable for deployment in
resource-constrained microcontrollers. This can also ensure
faster inference through the use of fixed-point integer
operations rather than floating-point operations.

We follow the quantization procedure described in (Qiu
et al., 2016; Zhang et al., 2017) for quantizing the remaining
full-precision weights and activations of the pre-trained ST-
HybridNet. The full-precision weights and activations of
the pre-trained ST-HybridNet are quantized progressively,
one layer at a time, by finding the optimal min/max range
for each layer that minimizes the loss in accuracy because of
quantization. Table 6 captures the accuracy, model size and
total memory required for storing the weights and activa-
tions of the quantized ST-HybridNet model during inference.
We assume that the memory for activations is reused across
different layers and, hence, the memory requirement for
the activations uses the maximum of two consecutive lay-
ers (output activations from a preceding layer and input
activations to the following layer). As shown in Table 6,
quantizing activations of our ST-HybridNet to 8 bits reduces
the model size to 10.54KB and the total memory footprint to
26.17KB, albeit with a very small loss in accuracy of 0.27%.
This is primarily attributed to the intermediate activations
(activations produced post-convolution with strassen matrix
Wb) of the strassenified depthwise convolutions of two DS
layers that require 16 bits to represent their range precisely
and preserve baseline accuracy. Quantizing the â weights
and the intermediate activations of the depthwise convo-
lution layers to 16 bits and the remaining full-precision
weights and activations to 8 bits in our ST-HybridNet not
only recovers the small accuracy loss of the quantized ST-
HybridNet with fully 8 bits activations, but also achieves
marginally better accuracy than the baseline quantized DS-
CNN network, possibly owing to better regularization be-
cause of quantization. The quantized ST-HybridNet with
mixed 8/16 bits activations (16 bits for strassenified depth-

Table 6. Model quality and memory footprint after quantizing
weights and activations of pre-trained ST-HybridNet. Memory
footprint denotes the total memory required for storing weights
and activations of a network during inference. 1KB = 1024 bytes.

NETWORK ACC. OPS MODEL TOTAL MEMORY
(%) SIZE FOOTPRINT

DS-CNN 94.4 2.7M 22.07KB 37.7KB
ST-HYBRIDNET QUANTIZED 94.13 2.4M 10.54KB 26.17KB
(FULLY 8B ACTIVATIONS)
ST-HYBRIDNET QUANTIZED 94.71 2.4M 10.54KB 41.8KB
(MIXED 8B/16B ACTIVATIONS)

wise convolution layers) reduces model size to 10.54KB
and requires an overall memory footprint of 41.8KB. Out
of 41.8KB of total footprint, 31.25KB of memory is primar-
ily attributed to the storage of 16 bits intermediate activa-
tions of strassenified depthwise layers. Remaining layers of
ST-HybridNet require at most 15.63KB of memory during
inference for storing activations of two consecutive layers.

In summary, the quantized ST-HybridNet reduces model size
by 52.2% and overall memory footprint by 30.6% while in-
curring a negligible loss in accuracy when compared to the
baseline quantized DS-CNN. It is important to note that Ta-
ble 6 captures accuracy results with quantizing weights and
activations of the pre-trained ST-HybridNet. In other words,
the ST-HybridNet here is not retrained post quantization.
We believe this 0.27% drop in accuracy with quantizing acti-
vations to 8 bits can be recovered via integrating the quanti-
zation process into the training procedure of ST-HybridNet.
We leave this exploration for future work.

5 COMPARATIVE ANALYSIS

In recent years, numerous research efforts have been de-
voted to compressing neural networks for deployment in
resource-constrained environments through the use of model
pruning, quantization, low-rank matrix factorization, com-
pact network architecture design, etc. ST-HybridNet falls
into the category of compact architecture design for IoT
applications. In order to demonstrate the efficacy of ST-
HybridNet over other model compression techniques, we
apply state-of-the-art pruning and quantization techniques
to the baseline DS-CNN network and present their perfor-
mance in this section.

Model pruning. Pruning away unimportant connections
induces sparsity in a neural network, thereby reducing the
number of nonzero-valued parameters in the model. Re-
cent works (Han et al., 2015; Narang et al., 2017; Zhu &
Gupta, 2017) on model pruning have shown that common
networks have significant redundancy and can be pruned
dramatically during training with marginal to no degrada-
tion in the model accuracy. By reducing nonzero parameters
of a network, model pruning attempts to reap improvements
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Table 7. Model size and accuracy tradeoff for DS-CNN, the current
state-of-the-art for KWS application.

SPARSITY NONZERO PARAMETERS ACC. (%)

0% 23.18K 94.4
50% 11.59K 94.03
75% 5.79K 92.37
90% 2.31K 87.41

in inference time and energy-efficiency. In addition to the
storage for the nonzero model elements, a pruned model
requires to store auxiliary data structures for indexing these
elements resulting in additional storage overhead. On top
of that the specialized routines involved with sparse matrix
computations of a pruned model require considerable spar-
sity in associated matrices to realize any benefit in runtime
owing to their irregular computation pattern and under uti-
lization of any available SIMD units. Typically, a sparsity
level of 70% or above is required in order for a sparse ma-
trix computation to observe any benefit in runtime than the
corresponding dense matrix computation.

We follow the gradual pruning technique proposed in (Zhu
& Gupta, 2017) to prune the parameters of the baseline DS-
CNN network. (Zhu & Gupta, 2017) gradually prunes the
small magnitude weights to achieve a preset level of net-
work sparsity. Table 7 compares the performance of sparse
DS-CNN models pruned to varying extents. As shown in
Table 7, although a 50% sparse DS-CNN model causes
marginal loss in accuracy, it will be hard for the DS-CNN
model to realize any benefit with this sparsity either in run-
time, due to the sparse matrix computation, or in model size,
due to the overhead from storing indices when compared
to ST-HybridNet. Nevertheless, as different model pruning
techniques (Guo et al., 2016; Aghasi et al., 2017; Wen et al.,
2016; He et al., 2017; Luo et al., 2017; Yang et al., 2018;
Gordon et al., 2018) are orthogonal to our compression
scheme, they can be used in conjunction with ST-HybridNet
to further reduce model size.

Model quantization. As mentioned previously, the base-
line DS-CNN network in Table 3 uses an 8-bit fixed-point
quantized format to represent weights. In order to observe
the impact of binary/ternary quantization (Courbariaux et al.,
2015; Rastegari et al., 2016; Lin et al., 2017; Cai et al., 2017;
Li & Liu, 2016; Zhu et al., 2016), we apply ternary weight
quantization (Li & Liu, 2016) over the baseline DS-CNN
network. Ternary quantization of the weights of DS-CNN
reduces the model size to 9.92KB but drops prediction accu-
racy significantly (by 2.27%). Any increase in the size of the
DS-CNN network to recover the accuracy loss while using
ternary quantization will lead to an increase in the number
of MAC operations. Recent work on BinaryCmd (Fernndez-
Marqus et al., 2018) achieves significant reduction in KWS
model size but at the cost of 3.4% accuracy loss compared

to the baseline DS-CNN network.

Low-rank matrix factorization. Besides pruning and
quantization, low-rank matrix factorization techniques
(Jaderberg et al., 2014; Tai et al., 2015; Wen et al., 2017)
exploit parameter redundancy to obtain low-rank approxi-
mations of weight matrices without compromising model
accuracy. Strassen matrices of our ST-HybridNet can adopt
these prior proposals to further reduce model size and com-
putational complexity.

Compact network architectures. Much research has
been done in recent years on developing compact archi-
tectures (Chen et al., 2014; Sainath & Parada, 2015; Sun
et al., 2016; Arik et al., 2017; Zhang et al., 2017; Li et al.,
2017; Fernndez-Marqus et al., 2018; Myer & Tomar, 2018;
Coucke et al., 2018) for keyword spotting on resource-
constrained environments. Recent work on EdgeSpeech-
Nets (Lin et al., 2018) produces good results albeit with
significantly higher computational complexity. It is targeted
for mobile processors (Arm Cortex-A53) as it requires at
least 10x more MAC operations than our baselines and pro-
posed ST-HybridNet, all of which are are primarily targeted
for microcontrollers. EdgeSpeechNet is well beyond the
constrained compute and storage budget of typical micro-
controllers described in (Zhang et al., 2017).

6 CONCLUSION AND FUTURE WORK

We have presented a hybrid network architecture for a key-
word spotting application capable of giving start-of-the-art
accuracy levels while requiring a fraction of the model pa-
rameters and considerably fewer operations per inference
pass. The hybrid architecture makes this possible by lever-
aging a few neural DS layers to extract features from the
audio input and feeding those features to a shallow Bonsai
decision tree to perform the classification. Furthermore,
StrassenNets is used to significantly reduce the model size.
The reduction in computation from the Bonsai tree, the
parameter-efficiency of the DS convolutional layers, and
the model footprint reduction provided by StrassenNets all
combine to make the KWS model much more amenable to
run on a highly constrained IoT device.

In the next iterations of this work, we will explore different
algorithmic ways to constrain the number of additions in a
strassenified network dominated with DS layers or specifi-
cally pointwise convolutions (e.g. MobileNets architecture)
and develop architectures or specialized hardware suitable
for such changes. This will not only enable a more homo-
geneous network architecture, but also will pave the way
for incorporating StrassenNets into the next generation mi-
crocontrollers while maintaining acceptable computational
costs and model size. We leave this exploration for future
work.
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