
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

ADAPTIVE COMMUNICATION STRATEGIES TO ACHIEVE THE BEST
ERROR-RUNTIME TRADE-OFF IN LOCAL-UPDATE SGD

Anonymous Authors1

ABSTRACT
Large-scale machine learning training, in particular distributed stochastic gradient descent, needs to be robust
to inherent system variability such as node straggling and random communication delays. This work considers
a distributed training framework where each worker node is allowed to perform local model updates and the
resulting models are averaged periodically. We analyze the true speed of error convergence with respect to
wall-clock time (instead of the number of iterations), and analyze how it is affected by the frequency of averaging.
The main contribution is the design of ADACOMM, an adaptive communication strategy that starts with infrequent
averaging to save communication delay and improve convergence speed, and then increases the communication
frequency in order to achieve a low error floor. Rigorous experiments on training deep neural networks show that
ADACOMM can take 3× less time than fully synchronous SGD, and still reach the same final training loss.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the backbone of state-
of-the-art supervised learning, which is revolutionizing in-
ference and decision-making in many diverse applications.
Classical SGD was designed to be run on a single computing
node, and its error-convergence with respect to the number
of iterations has been extensively analyzed and improved
via accelerated SGD methods. Due to the massive training
data-sets and neural network architectures used today, it
has became imperative to design distributed SGD imple-
mentations, where gradient computation and aggregation is
parallelized across multiple worker nodes. Although paral-
lelism boosts the amount of data processed per iteration, it
exposes SGD to unpredictable node slowdown and commu-
nication delays stemming from variability in the computing
infrastructure. Thus, there is a critical need to make dis-
tributed SGD fast, yet robust to system variability.

Need to Optimize Convergence in terms of Error versus
Wall-clock Time. The convergence speed of distributed
SGD is a product of two factors: 1) the error in the trained
model versus the number of iterations, and 2) the number
of iterations completed per second. Traditional single-node
SGD analysis focuses on optimizing the first factor, be-
cause the second factor is generally a constant when SGD
is run on a single dedicated server. In distributed SGD,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Systems and Machine
Learning (SysML) Conference. Do not distribute.

which is often run on shared cloud infrastructure, the second
factor depends on several aspects such as the number of
worker nodes, their local computation and communication
delays, and the protocol (synchronous, asynchronous or pe-
riodic) used to aggregate their gradients. Hence, in order
to achieve the fastest convergence speed we need: 1) opti-
mization techniques (eg. variable learning rate) to maximize
the error-convergence rate with respect to iterations, and 2)
scheduling techniques (eg. straggler mitigation, infrequent
communication) to maximize the number of iterations com-
pleted per second. These directions are inter-dependent and
need to be explored together rather than in isolation. While
many works have advanced the first direction, the second
is less explored from a theoretical point of view, and the
juxtaposition of both is an unexplored problem.

Local-Update SGD to Reduce Communication Delays.
A popular distributed SGD implementation is the parame-
ter server framework (Dean et al., 2012; Cui et al., 2014;
Li et al., 2014; Gupta et al., 2016; Mitliagkas et al., 2016)
where in each iteration, worker nodes compute gradients on
one mini-batch of data and a central parameter server ag-
gregates these gradients (synchronously or asynchronously)
and updates the parameter vector x. The constant commu-
nication between the parameter server and worker nodes
in each iteration can be expensive and slow in bandwidth-
limited computed environments. Recently proposed dis-
tributed SGD frameworks such as Elastic-averaging (Zhang
et al., 2015; Chaudhari et al., 2017), Federated Learning
(McMahan et al., 2017; Smith et al., 2017b) and decentral-
ized SGD (Lian et al., 2017; Jiang et al., 2017) save this
communication cost by allowing worker nodes to perform

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Wall clock time# Iterations

Tr
ai

ni
ng

 lo
ss

Large comm. period

Small comm. period

Adaptive Comm.

Tr
ai

ni
ng

 lo
ss

Iteration à Elapsed time

Change x-axis

Figure 1. This work departs from the traditional view of consid-
ering error-convergence with respect to the number of iterations,
and instead considers the true convergence in terms of error ver-
sus wall-clock time. Adaptive strategies that start with infrequent
model-averaging and increase the communication frequency can
achieve the best error-runtime trade-off.

local updates to the parameter x instead of just computing
gradients. The resulting locally trained models (which are
different due to variability in training data across nodes) are
periodically averaged through a central server, or via direct
inter-worker communication. Periodic averaging has been
shown to offer significant speedup in deep neural network
training (Moritz et al., 2015; Zhang et al., 2016; Su & Chen,
2015; Zhou & Cong, 2017; Lin et al., 2018).

Error-Runtime Trade-offs in Local-Update SGD. While
local updates reduce the communication-delay incurred per
iteration, discrepancies between the models can result in
an inferior error-convergence. For example, consider the
case of periodic averaging SGD where each of m worker
nodes makes τ local updates, and the resulting models are
averaged after every τ iterations. A larger value of τ leads to
slower convergence with respect to the number of iterations
as illustrated in Figure 1. However, if we look at the true con-
vergence with respect to the wall-clock time, then a larger τ ,
that is, less frequent averaging, saves communication delay
and reduces the runtime per iteration. While some recent
theoretical works (Zhou & Cong, 2017; Yu et al., 2018;
Wang & Joshi, 2018; Stich, 2018) study this dependence of
the error-convergence with respect to the number of itera-
tions as τ varies, achieving a provably-optimal speed-up in
the true convergence with respect to wall-clock time is an
open problem that we aim to address in this work.

Need for Adaptive Communication Strategies. In the
error-runtime in Figure 1, we observe a trade-off between
the convergence speed and the error floor when the number
of local updates τ is varied. A larger τ gives a faster initial
drop in the training loss but results in a higher error floor.
This calls for adaptive communication strategies that start
with a larger τ and gradually decrease it as the model reaches
closer to convergence. Such an adaptive strategy will offer
a win-win in the error-runtime trade-off by achieving fast

convergence as well as low error floor. To the best of our
knowledge, this is the first work to propose an adaptive
communication frequency strategy.

Main Contributions. In this paper we consider periodic-
averaging distributed SGD (PASGD), where each worker
node performs τ local updates by processing one mini-batch
of data per iteration. A fusion node takes a simple average
of these local models and then the worker nodes start with
the averaged model and perform the next τ local updates.
The main contributions are as follows:

1. We provide the first runtime analysis of local-update
SGD algorithms by modeling local computing time and
communication delays as random variables, and quan-
tifying the runtime speed-up in comparison with fully
synchronous SGD. A novel insight from this analysis
is that periodic averaging strategy not only reduces the
communication delay but also mitigates the stragglers.

2. Combining the runtime analysis and previous error-
convergence analysis of PASGD, we can obtain the
error-runtime trade-off for different values of τ . Using
this combined error-runtime trade-off, we derive an ex-
pression of the optimal communication period, which
can serve as a useful guideline in practice.

3. We present a convergence analysis for PASGD with
variable communication period τ and variable learning
rate η, generalizing previous works (Zhou & Cong,
2017; Wang & Joshi, 2018). This analysis shows that
decaying τ provides similar convergence benefits as de-
caying learning rate, the difference being that varying τ
improves the true convergence with respect to the wall-
clock time. Adaptive communication can also be used
in conjunction with existing learning rate schedules.

4. Based on the observations in runtime and conver-
gence analysis, we develop an adaptive communication
scheme: ADACOMM. Experiments on training VGG-
16 and ResNet-50 deep neural networks and differ-
ent settings (with/without momentum, fixed/decaying
learning rate) show that ADACOMM can give a 3×
runtime speed-up and still reach the same low training
loss as fully synchronous SGD.

Although we focus on periodic simple-averaging of lo-
cal models, the insights on error-runtime trade-offs and
adaptive communication strategies are directly extendable
to other communication-efficient SGD algorithms includ-
ing Federated Learning (McMahan et al., 2017), Elastic-
Averaging (Zhang et al., 2015) and Decentralized averag-
ing (Jiang et al., 2017; Lian et al., 2017), as well as syn-
chronous/asynchronous distributed SGD with a central pa-
rameter server (Dean et al., 2012; Cui et al., 2014; Dutta
et al., 2018).

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

2 PROBLEM FRAMEWORK

Empirical Risk Minimization via Mini-batch SGD. Our
objective is to minimize an objective function F (x), the
empirical risk function, with respect to model parameters
denoted by x ∈ Rd. The training dataset is denoted by
S = {s1, . . . , sN}, where si represents the i-th labeled
data point. The objective function can be expressed as the
empirical risk calculated using the training data and is given
by

min
x∈Rd

[
F (x) :=

1

N

N∑
i=1

f(x; si)

]
(1)

where f(x; si) is the composite loss function at the ith

data point. In classic mini-batch stochastic gradient descent
(SGD) (Dekel et al., 2012), updates to the parameter vector
x are performed as follows. If ξk ⊂ S represents a randomly
sampled mini-batch, then the update rule is

xk+1 = xk − ηg(xk; ξk) (2)

where η denotes the learning rate and the stochastic gradient
is defined as: g(x; ξ) = 1

|ξ|
∑
si∈ξ∇f(x; si). For simplic-

ity, we will use g(xk) instead of g(xk; ξk) in the rest of
the paper. A complete review of convergence properties of
serial SGD can be found in (Bottou et al., 2018).

Periodic Averaging SGD (PASGD). We consider a dis-
tributed SGD framework with m worker nodes where all
workers can communicate with others via a central server or
via direct inter-worker communication. In periodic averag-
ing SGD, all workers start at the same initial point x1. Each
worker performs τ local mini-batch SGD updates according
to (2), and the local models are averaged by a fusion node
or by performing an all-node broadcast. The workers then
update their local models with the averaged model, as illus-
trated in Figure 2. Thus, the overall update rule at the ith

worker is given by

x
(i)
k+1 =

{
1
m

∑m
j=1[x

(j)
k − ηg(x

(j)
k)], kmod τ = 0

x
(i)
k − ηg(x

(i)
k), otherwise

(3)

where x
(i)
k denote the model parameters in the i-th worker

after k iterations and τ is defined as the communication
period. Note that the iteration index k corresponds to the
local iterations, and not the number of averaging steps.

Special Case (τ = 1): Fully Synchronous SGD. When
τ = 1, that is, the local models are synchronized after
every iteration, periodic-averaging SGD is equivalent to
fully synchronous SGD which has the update rule

xk+1 = xk − η
[
1

m

m∑
i=1

g(xk; ξ
(i)
k)

]
. (4)

= 3 local steps
at each worker
⌧

x
(1)
2

x
(1)
3

x
(2)
3

x
(2)
2

x1 = x
(2)
1 = x

(1)
1

x4

x7

Figure 2. Illustration of Periodic averaging SGD (PASGD) in the
model parameter space for m = 2 workers. The discrepancy be-
tween the local models increases with the number of local updates,
τ = 3.

Worker1

Worker2

x1 x4 x7

Figure 3. Illustration of PASGD in the time space for m = 2
and τ = 3. Lengths of the colored arrows at the ith worker are
Yi,k, the local-update times, which are i.i.d. across workers and
updates. The blue block represents the communication delay for
each model-averaging step.

The analysis of fully synchronous SGD is identical to serial
SGD with m-fold large mini-batch size.

Local Computation Times and Communication Delay.
In order to analyze the effect of τ on the expected runtime
per iteration, we consider the following delay model. The
time taken by the ith worker to compute a mini-batch gra-
dient at the kth local-step is modeled a random variable
Yi,k ∼ FY , assumed to be i.i.d. across workers and mini-
batches. The communication delay is a random variable D
for each all-node broadcast, as illustrated in Figure 3. The
value of random variable D can depend on the number of
workers as follows.

D = D0 · s(m) (5)

where D0 represents the time taken for each inter-node
communication, and s(m) describes how the delay scales
with the number of workers, which depends on the im-
plementation and system characteristics. For example, in
the parameter server framework, the communication delay
can be proportional to 2 log2(m) by exploiting a reduction
tree structure (Iandola et al., 2016). We assume that s(m)
is known beforehand for the communication-efficient dis-
tributed SGD framework under consideration.

Convergence Criteria. In the error-convergence analysis,
since the objective function is non-convex, we use the ex-
pected gradient norm as a an indicator of convergence fol-
lowing (Ghadimi & Lan, 2013; Bottou et al., 2018). We say

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

the algorithm achieves an ε-suboptimal solution if:

E
[

min
k∈[1,K]

‖∇F (xk)‖2
]
≤ ε. (6)

When ε is arbitrarily small, this condition can guarantee the
algorithm converges to a stationary point.

3 JOINTLY ANALYZING RUNTIME AND
ERROR-CONVERGENCE

3.1 Runtime Analysis

We now present a comparison of the runtime per iteration
of periodic averaging SGD with fully synchronous SGD to
illustrate how increasing τ can lead to a large runtime speed-
up. Another interesting effect of performing more local
update τ is that it mitigates the slowdown due to straggling
worker nodes.

Runtime Per Iteration of Fully Synchronous SGD. Fully
synchronous SGD is equivalent to periodic averaging SGD
with τ = 1. Each of themworkers computes the gradient of
one mini-batch and updates the parameter vector x, which
takes time Yi,1 at the ith worker1. After all workers finish
their local updates, an all-node broadcast is performed to
synchronize and average the models. Thus, the total time to
complete each iteration is given by

Tsync = max(Y1,1, Y2,1, . . . , Ym,1) +D (7)
E [Tsync] = E[Ym:m] + E[D] (8)

where Yi,1 are i.i.d. random variables with probability dis-
tribution FY and D is the communication delay. The term
Ym:m denotes the highest order statistic of m i.i.d. random
variables (David & Nagaraja, 2003).

Runtime Per Iteration of Periodic Averaging SGD
(PASGD). In periodic averaging SGD, each worker per-
forms τ local updates before communicating with other
workers. Let us denote the average local computation time
at the ith worker by

Y i =
Yi,1 + Yi,2 + . . . Yi,τ

τ
(9)

Since the communication delay D is amortized over τ itera-
tions, the average computation time per iteration is

TP-Avg = max(Y 1, Y 2, . . . , Y m) +
D

τ
(10)

E[TP-Avg] = E[Y m:m] +
E[D]

τ
(11)

1Instead of local updates, typical implementations of fully
synchronous SGD have a central server that performs the update.
Here we compare PASGD with fully synchronous SGD without a
central parameter server.

The value of the first term Y m:m and how it compares with
Ym:m depends on the probability distribution FY of Y . We
can obtain the following distribution-independent bound on
the runtime of PASGD that only depends on the mean and
the variance of Y .

Theorem 1 (Upper Bound on the Runtime per Iteration).
Suppose each worker takes time Y ∼ FY to compute gra-
dients and perform a local update, which is i.i.d. across
workers and mini-batches. The mean and the variance of Y
are µY and σ2

Y respectively. Then,

E [TP-Avg] ≤ µY + σY

√
m− 1

τ
+

E[D]

τ
. (12)

The proof follows from the bound on expected order statis-
tics given by (Arnold & Groeneveld, 1979). Observe that as
we increase τ , the runtime bound in Theorem 1 decreases in
two ways: 1) τ -fold reduction in the communication delay
and 2) reduction in the variance of the maximum of the local
computation times, that is, reduction in additional delay due
to slow or straggling workers.

Speed-up over fully synchronous SGD. We now evaluate
the speed-up of periodic-averaging SGD over fully syn-
chronous SGD for different Y and D to demonstrate how
the relative value of computation versus communication de-
lays affects the speed-up. Consider the simplest case where
Y and D are constants and α = D/Y , the communica-
tion/computation ratio. Besides systems aspects such as
network bandwidth and computing capacity, for deep neural
network training, this ratio α also depends on the size of the
neural network model and the mini-batch size. See Figure 8
for a comparison of the communication/computation delays
of common deep neural network architectures. Then Y ,
Ym:m, Y m:m are all equal to Y , and the ratio of E[Tsync]
and E[TP-Avg] is given by

E [Tsync]

E [TP-Avg]
=

Y +D

Y +D/τ
=

1 + α

1 + α/τ
(13)

Figure 4 shows the speed-up for different values of α and
τ . When D is comparable with Y (α = 0.9), periodic-
averaging SGD (PASGD) can be almost twice as fast as
fully synchronous SGD.

Straggler Mitigation due to Local Updates. Suppose that
Y is exponentially distributed with mean y and variance
y2. For fully synchronous SGD, the term E[Ym:m] in (8)
is equal to y

∑m
i=1 1/i, which is approximately equal to

y logm. Thus, the expected runtime per iteration of fully
synchronous SGD (8) increases logarithmically with the
number of workers m. Let us compare this with the scaling
of the runtime of periodic-averaging SGD (11). Here, Y
(9) is an Erlang random variable with mean y and variable
y2/τ . Since the variance is τ times smaller than that of

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

0 20 40 60 80 100
Communication period

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
ov

er
 f

ul
ly

 s
yn

c
SG

D

 = 0.1
 = 0.5
 = 0.9

Figure 4. The speed-up offered by using periodic-averaging SGD
increases with τ (the communication period) and with the com-
munication/computation delay ratio α = D/Y , where D is the
all-node broadcast delay and Y is the time taken for each local
update at a worker.

Y , the maximum order statistic E[Y m:m] is smaller than
E[Ym:m]. Figure 5 shows the probability distribution of
Tsync and TP-Avg for exponentially distributed Y . Observe
that TP-Avg has a much lighter tail. This is because the effect
of the variability in Y on TP-Avg is reduced due to the Y in
(8) being replaced by Y (which has lower variance) in (11).

0 2 4 6 8
Runtime per iteration

0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Sync SGD
PASGD (= 10)

Figure 5. Probability distribution of runtime per iteration, where
communication delay D = 1, mean computation time y = 1, and
number of workers m = 16. Dash lines represent the mean values.

3.2 Joint Analysis with Error-convergence

In this subsection, we combine the runtime analysis with
previous error-convergence analysis for PASGD (Wang &
Joshi, 2018). Due to space limitations, we state the neces-
sary theoretical assumptions in the Appendix; the assump-
tions are similar to previous works (Zhou & Cong, 2017;
Wang & Joshi, 2018) on the convergence of local-update
SGD algorithms.

Theorem 2 (Error-runtime Convergence of PASGD).

0 1000 2000 3000 4000
Total runtime

0

0.2

0.4

0.6

0.8

1

G
ra

di
en

t n
or

m
 u

pp
er

 b
ou

nd

Sync SGD
PASGD (= 10)

Figure 6. Illustration of theoretical error bound versus runtime in
Theorem 2. The runtime per iteration is generated under the same
parameters as Figure 5. Other constants in (14) are set as follows:
F (x1) = 1, Finf = 0, η = 0.08, L = 1, σ2 = 1.

For PASGD, under certain assumptions (stated in the Ap-
pendix), if the learning rate satisfies ηL+η2L2τ(τ−1) ≤ 1
and all workers are initialized at the same point x1, then
after total T wall-clock time, the minimal expected squared
gradient norm within T time interval will be bounded by:

2 [F (x1)− Finf]

ηT

(
E
[
Y m:m

]
+

E [D]

τ

)
+
ηLσ2

m

+η2L2σ2(τ − 1) (14)

where L is the Lipschitz constant of the objective function
and σ2 is the variance bound of mini-batch stochastic gra-
dients.

The proof of Theorem 2 is presented in the Appendix. From
the optimization error upper bound (14), one can easily
observe the error-runtime trade-off for different communi-
cation periods. While a larger τ reduces the runtime per
iteration and let the first term in (14) become smaller, it also
adds additional noise and increases the last term. In Figure 6,
we plot theoretical bounds for both fully synchronous SGD
(τ = 1) and PASGD. It is shown that although PASGD with
τ = 10 starts with a rapid drop, it will eventually converge
to a high error floor. This theoretical result is also corrobo-
rated by experiments in Section 5. Another direct outcome
of Theorem 2 is the determination of the best communica-
tion period that balances the first and last terms in (14). We
will discuss the selection of communication period later in
Section 4.1.

4 ADACOMM: PROPOSED ADAPTIVE
COMMUNICATION STRATEGY

Inspired by the clear trade-off in the learning curve in Fig-
ure 6, it would be better to have an adaptive communication
strategy that starts with infrequent communication to im-

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Wall clock time

Tr
ai

ni
ng

 lo
ss Switch point

Large comm. period
Small comm. period

(a) Switch between curves.

Tr
ai

ni
ng

 lo
ss

⌧⇤0 ⌧⇤1 ⌧⇤2

T00 2T0 lT0

⌧⇤l

· · ·

· · · · · ·

(b) Choose the best τ for each
time interval.

Figure 7. Illustration of communication period adaptation strate-
gies. Dash line denotes the learning curve using adaptive commu-
nication.

prove convergence speed, and then increases the frequency
to achieve a low error floor. In this section, we are going to
develop the proposed adaptive communication scheme.

The basic idea to adapt the communication is to choose
the communication period that minimizes the optimization
error at each wall-clock time. One way to achieve the idea is
switching between the learning curves at their intersections.
However, without prior knowledge of various curves, it
would be difficult to determine the switch points.

Instead, we divide the whole training procedure into uniform
wall-clock time intervals with the same length T0. At the
beginning of each time interval, we select the best value of τ
that has the fastest decay rate in the next T0 wall-clock time.
If the interval length T0 is small enough and the best choice
of communication period for each interval can be precisely
estimated, then this adaptive scheme should achieve a win-
win in the error-runtime trade-off as illustrated in Figure 7.

After setting the interval length, the next question is how
to estimate the best communication period for each time
interval. In Section 4.1 we use the error-runtime analysis in
Section 3.2 to find the best τ at each time.

4.1 Determining the Best Communication Period for
Each Time Interval

From Theorem 2, it can be observed that there is an optimal
value τ∗ that minimizes the optimization error bound at
given wall-clock time. In particular, consider the simplest
setting where Y and D are constants. Then, by minimizing
the upper bound (14) over τ , we obtain the following.

Theorem 3. For PASGD, under the same assumptions as
Theorem 2, the optimization error upper bound in (14) at
time T is minimized when the communication period is

τ∗ =

√
2(F (x1)− Finf)D

η3L2σ2T
. (15)

The proof is straightforward by setting the derivative of (14)

to zero. We present the details in the Appendix. Suppose all
workers starts from the same initial point x1 = xt=0 where
subscript t denotes the wall-clock time. Directly applying
Theorem 3 to the first time interval, then the best choice of
communication period is:

τ0 =

√
2(F (xt=0)− Finf)D

η3L2σ2T0
. (16)

Similarly, for the l-th time interval, workers can be viewed
as restarting training at a new initial point xt=lT0

. Applying
Theorem 3 again, we have

τl =

√
2(F (xt=lT0

)− Finf)D

η3L2σ2T0
. (17)

Comparing (16) and (17), it is easy to see the generated
communication period sequence decreases along with the
objective value F (xt). This result is consistent with the
intuition that the trade-off between error-convergence and
communication-efficiency varies over time. Compared to
the initial phase of training, the benefit of using a large com-
munication period diminishes as the model reaches close to
convergence. At this later stage, a lower error floor is more
preferable to speeding up the runtime.

Practical SGD implementations generally decay the learn-
ing rate or increase the mini-batch size (Smith et al., 2017a;
Goyal et al., 2017), in order to reduce the variance of the
gradient updates. As we saw from the convergence analysis
Theorem 2, performing local updates adds noise in stochas-
tic gradients, resulting in a higher error floor at the end of
training. Decaying the communication period can gradu-
ally reduce the variance of gradients and yield a similar
improvement in convergence. Thus, adaptive communica-
tion strategies are similar in spirit to decaying learning rate
or increasing mini-batch size. The key difference is that here
we are optimizing the true error convergence with respect
to wall-clock time rather than the number iterations.

4.2 Practical Considerations

Although (16) and (17) provide useful insights about how
to adapt τ over time, it is still difficult to directly use them
in practice due to the Lipschitz constant L and the gradi-
ent variance bound σ2 being unknown. For deep neural
networks, estimating these constants can be difficult and un-
reliable due to the highly non-convex and high-dimensional
loss surface. As an alternative, we propose a simpler rule
where we approximate Finf by 0, and divide (17) by (16) to
obtain the basic communication period update rule:

Basic update rule τl =

⌈√
F (xt=lT0

)

F (xt=0)
τ0

⌉
(18)

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

where dae is the ceil function to round a to the nearest inte-
ger ≥ a. Since the objective function values (i.e., training
loss) F (xt=lT0) and F (xt=0) can be easily obtained in the
training, the only remaining thing now is to determine the
initial communication period τ0. We obtain a heuristic esti-
mate of τ0 by a simple grid search over different τ run for
one or two epochs each.

4.3 Refinements to the Proposed Adaptive Strategy

4.3.1 Faster Decay When Training Saturates

The communication period update rule (18) tends to give a
decreasing sequence {τl}. Nonetheless, it is possible that
the best value of τl for next time interval is larger than the
current one due to random noise in the training process.
Besides, when the training loss can get stuck on plateaus
and decrease very slowly, (18) will result in τl saturating at
the same value for a long time. To address this issue, we
borrow a idea used in classic SGD where the learning rate
is decayed by a factor γ when the training loss saturates
for several epochs (Goyal et al., 2017). Similarly, in the
our scheme, the communication period will be multiplied
by γ < 1 when the τl given by (18) is not strictly less than
τl−1. To be specific, the communication period for the lth

time interval will be determined as follows:

τl =

⌈√

F (xt=lT0
)

F (xt=0)
τ0

⌉
, if

⌈√
F (xt=lT0

)

F (xt=0)
τ0

⌉
< τl−1

γτl−1, otherwise
.

(19)

In the experiments, γ = 1/2 turns out to be a good choice.
One can obtain a more aggressive decay in τl by either
reducing the value of γ or introducing a slack variable s in

the condition, such as d
√

F (xt=lT0
)

F (xt=0)
τ0e+ s < τl−1.

4.3.2 Incorporating Adaptive Learning Rate

So far we consider a fixed learning rate η for the local
SGD updates at the workers. We now present an adaptive
communication strategy that adjusts τl for a given variable
learning rate schedule, in order to obtain the best error-
runtime trade-off. Suppose ηl denotes the learning rate for
the lth time interval. Then, combining (16) and (17) again,
we have

τl =

⌈√
η30
η3l

F (xt=lT0
)

F (xt=0)
τ0

⌉
. (20)

Observe that when the learning rate becomes smaller, the
communication period τl increases. This result corresponds
the intuition that a small learning rate reduces the discrep-
ancy between the local models, and hence is more tolerant
to large communication periods.

(20) states that the communication period should be propor-
tional to (η0/ηl)

3/2. However, in practice, it is common to
decay the learning rate 10 times after some given number
of epochs. The dramatic change of learning rate may push
the communication period to an unreasonably large value.
In the experiments with momentum SGD, we observe that
when applying (20), the communication period can increase
to τ = 1000 which causes the training loss to diverge.

To avoid this issue, we propose the adaptive strategy given
by (21) below. This strategy can also be justified by theoret-
ical analysis. Suppose that in lth time interval, the objective
function has a local Lipschitz smoothness Ll. Then, by
using the approximation ηlLl ≈ 1, which is common in
SGD literature (Balles et al., 2016), we derive the following
adaptive strategy:

τl =

⌈√
η30L

2
0

η3l L
2
l

F (xt=lT0)

F (xt=0)
τ0

⌉
≈
⌈√

η0
ηl

F (xt=lT0)

F (xt=0)
τ0

⌉
.

(21)

Apart from coupling the communication period with learn-
ing rate, when to decay the learning rate is another key
design factor. In order to eliminate the noise introduced by
local updates, we choose to first gradually decay the commu-
nication period to 1 and then decay the learning rate as usual.
For example, if the learning rate is scheduled to be decayed
at the 80th epoch but at that time the communication period
τ is still larger than 1, then we will continue use the current
learning rate until τ = 1.

4.4 Theoretical Guarantees for the Convergence of
ADACOMM

In this subsection, we are going to provide a convergence
guarantee for the proposed adaptive communication scheme
by extending the error analysis for PASGD. Without loss
of generality, we will analyze an arbitrary communication
period sequence {τ0, . . . , τR}, where R represents the total
communication rounds2. It will be shown that a decreasing
sequence of τ is beneficial to the error-convergence rate.

Theorem 4 (Convergence of adaptive communication
scheme). For PASGD with adaptive communication pe-
riod and adaptive learning rate, suppose the learning rate
remains same in each local update period. If the following
conditions are satisfied as R→∞,

R∑
r=0

ηrτr →∞,
R∑
r=0

η2rτr → 0,

R∑
r=0

η3rτ
2
r → 0, (22)

2Note that in the error analysis, the subscripts of communica-
tion period and learning rate represent the index of local update
periods rather than the index of the T0-length wall-clock time
intervals as considered in Sections 4.1-4.3.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

then the averaged model x is guaranteed to converge to a
stationary point:

E

[∑R−1
r=0 ηr

∑τr
k=1 ‖∇F (xsr+k)‖

2∑R−1
r=0 ηrτr

]
→ 0 (23)

where sr =
∑r−1
j=0 τj .

The proof details and a non-asymptotic result (similar to
Theorem 2 but with variable τ) are provided in Appendix. In
order to understand the meaning of condition (22), let us first
consider the case when τ0 = · · · = τR is a constant. In this
case, the convergence condition is identical to mini-batch
SGD (Bottou et al., 2018):

R∑
r=0

ηr →∞,
R∑
r=0

η2r → 0. (24)

As long as the communication period sequence is bounded,
it is trivial to adapt the learning rate scheme in mini-batch
SGD (24) to satisfy (22). In particular, when the sequence
is decreasing, the last two terms in (22) will have faster rate
to converge to zero. As a result, (23) also benefits from the
faster rate and the local-update SGD algorithm has better
convergence guarantee.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setting

Platform. The proposed adaptive communication scheme
was implemented in Pytorch (Paszke et al., 2017) with
Mpi4Py (Dalcı́n et al., 2005). All experiments were con-
ducted on a local cluster where each worker node has an
NVIDIA TitanX GPU and 16-core Intel Xeon CPU.

Dataset. We evaluate our method for image classifica-
tion tasks on CIFAR10 and CIFAR100 dataset (Krizhevsky,
2009), which consists of 50,000 training images and 10,000
validation images in 10 and 100 classes respectively. Each
worker machine is assigned with a partition which will be
randomly shuffled after every epoch.

Model. We choose to train deep neural networks VGG-16
(Simonyan & Zisserman, 2014) and ResNet-50 (He et al.,
2016) from scratch. These two neural networks have dif-
ferent architectures and parameter sizes, thus resulting in
different performance of periodic averaging. As shown in
Figure 8, for VGG-16, the communication time is about 4
times higher than the computation time. Thus, compared
to ResNet-50, it requires a larger τ in order to reduce the
runtime-per-iteration and achieve fast convergence.

Moreover, unless otherwise stated, we used 4 worker nodes
and mini-batch size on each worker is 128. Therefore, the
total mini-batch size per iteration is 512. The initial learning

ResNet50 ResNet50, =10 VGG16 VGG16, =10
0

5

10

15

20

25

W
al

l c
lo

ck
 ti

m
e

Computation time
Communication time

Figure 8. Wall-clock time to finish 100 iterations in a cluster
with 4 worker nodes. To achieve the same level communica-
tion/computation ratio, VGG-16 requires larger communication
period than ResNet-50.

rates for VGG-16 and ResNet-50 are 0.2 and 0.4 respec-
tively. The weight decay for both networks is 0.0005. In
the variable learning rate setting, we decay the learning rate
by 10 after 80th/120th/160th/200th epochs. We set the time
interval length T0 as 60 seconds (about 10 epochs for the
initial communication period).

Metrics. We compare the performance of proposed adaptive
communication scheme with following methods with a fixed
communication period: (1) Baseline: fully synchronous
SGD (τ = 1); (2) Extreme high throughput case where
τ = 100; (3) Manually tuned case where a moderate value
of τ is selected after trial runs with different communication
periods. Instead of training for a fixed number of epochs, we
train all methods for sufficiently long time to convergence
and compare the training loss and test accuracy, both of
which are recorded after every 100 iterations.

5.2 Adaptive Communication in PASGD

We first validate the effectiveness of ADACOMM which uses
the communication period update rule (19) combined with
(21) on original PASGD without momentum.

Figure 9 presents the results for VGG-16 for both fixed and
variable learning rates. A large communication period τ
initially results in a rapid drop in the error, but the error fi-
nally converges to higher floor. By adapting τ , the proposed
ADACOMM scheme strikes the best error-runtime trade-off
in all settings. In Figure 9a, while fully synchronous SGD
takes 33.5 minutes to reach 3 × 10−3 training loss, ADA-
COMM costs 15.5 minutes achieving more than 2× speedup.
Similarly, in Figure 9b, ADACOMM takes 11.5 minutes to
reach 4.5× 10−2 training loss achieving 3.3× speedup over
fully synchronous SGD (38.0 minutes).

However, for ResNet-50, the communication overhead is
no longer the bottleneck. For fixed communication period,

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

the negative effect of performing local updates becomes
more obvious and cancels the benefit of low communication
delay (see Figures 10b and 10c). It is not surprising to
see fully synchronous SGD is nearly the best one in the
error-runtime plot among all fixed-τ methods. Even in
this extreme case, adaptive communication can still have
a competitive performance. When combined with learning
rate decay, the adaptive scheme is about 1.3 times faster
than fully synchronous SGD (see Figure 10a).

Table 1 lists the test accuracies in different settings; we
report the best accuracy within a time budget for each setting.
The results show that adaptive communication method have
better generalization than fully synchronous SGD. In the
variable learning rate case, the adaptive method even gives
the better test accuracy than PASGD with the best fixed τ .

Table 1. Best test accuracies on CIFAR10 in different settings
(SGD without momentum).

MODEL METHODS FIXED LR VARIABLE LR

VGG-16

τ = 1 90.5 92.75
τ = 20 92.25 92.5
τ = 100 92.0 92.4

ADACOMM 91.1 92.85

RESNET-
50

τ = 1 88.76 92.26
τ = 5 90.42 92.26
τ = 100 88.66 91.8

ADACOMM 89.57 92.42

5.3 Adaptive Communication in Momentum SGD

The adaptive communication scheme is proposed based on
the joint error-runtime analysis for PASGD without mo-
mentum. However, it can also be extended to other SGD
variants, and in this subsection, we show that the proposed
method works well for SGD with momentum.

5.3.1 Block Momentum in Periodic Averaging

Before presenting the empirical results, it is worth describ-
ing how to introduce momentum in PASGD. The most
straightforward way is to apply the momentum indepen-
dently to each local model, where each worker maintains an
independent momentum buffer, which is the latest change in
the parameter vector x. However, this does not account for
the potential dramatic change in x at each averaging step.
When local models are synchronized, the local momentum
buffer will contain the update steps before averaging, result-
ing in a large momentum term in the first SGD step of the
next local update period. When the communication period
is large, this large momentum term can sidetrack the SGD
descent direction resulting in slower convergence.

To address this issue, a block momentum scheme was pro-

posed in (Chen & Huo, 2016) and applied to speech recog-
nition tasks. The basic idea is treating the accumulated local
updates in one period as one big gradient step between two
synchronized models and introducing a global momentum
for this big accumulated step. The update rule can be written
as follows in terms of the momentum uj :

uj = βglobuj−1 + Gj (25)
x(j+1)τ+1 = xjτ+1 − ηjuj (26)

where Gj = 1
m

∑m
i=1

∑τ
k=1 g(x

(i)
jτ+k) represents the accu-

mulated gradients in the jth local update period and βglob
denotes the global momentum factor. Moreover, workers
can also conduct momentum SGD on local models, but their
local momentum buffer will be cleared at the beginning of
each local update period. That is, we restart momentum
SGD on local models after every averaging step. The same
strategy was also suggested in Microsoft’s CNTK frame-
work (Seide & Agarwal, 2016). In our experiments, we
set the global momentum factor as 0.3 and local momen-
tum factor as 0.9 following (Lin et al., 2018). In the fully
synchronous case, there is no need to introduce the block
momentum and we simply follow the common practice set-
ting the momentum factor as 0.9.

5.3.2 ADACOMM plus Block Momentum

We applied our adaptive communication strategy in PASGD
with block momentum and observed significant performance
gain on CIFAR10/100 (see Figure 11). In particular, the
adaptive communication scheme has the fastest convergence
rate with respect to wall-clock time in the whole training
process. While fully synchronous SGD gets stuck with a
plateau before the first learning rate decay, the training loss
of adaptive method continuously decreases until converging.
For VGG-16 in Figure 11b, ADACOMM is 3.5× faster (in
terms of wall-clock time) than fully synchronous SGD in
reaching a 3 × 10−3 training loss. For ResNet-50 in Fig-
ure 11a, ADACOMM takes 15.8 minutes to get 2 × 10−2

training loss which is 2 times faster than fully synchronous
SGD (32.6 minutes).

6 CONCLUDING REMARKS

The design of fast communication-efficient distributed SGD
algorithms that are robust to system variability is vital to
enable machine learning training to scale to resource-limited
computing nodes. This paper is one of the first to analyze
the convergence of error with respect to wall-clock time
instead of number of iterations by accounting for the de-
pendence of runtime per iteration on systems aspects such
as computation and communication delays. We present a
theoretical analysis of the error-runtime trade-off for peri-
odic averaging SGD (PASGD), where each worker node
performs local updates and their models are averaged after

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

0 5 10 15 20 25 30 35
Wall clock time / min

10-2

100

T
ra

in
in

g
lo

ss

VGG-16, variable learning rate

 = 1
 = 20
 = 100

AdaComm

0 5 10 15 20 25 30 35
0

10
20

C
om

m
. P

er
io

d

(a) Variable learning rate on CIFAR10.

0 10 20 30 40 50 60
Wall clock time / min

10-1

100

T
ra

in
in

g
lo

ss

VGG-16, fixed learning rate

 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40 50 60
0

10
20

C
om

m
. P

er
io

d

(b) Fixed learning rate on CIFAR10.

0 5 10 15 20 25 30
0

10

20

C
om

m
. P

er
io

d

0 5 10 15 20 25 30
Wall clock time / min

10-1

100

T
ra

in
in

g
lo

ss

VGG16, fixed learning rate, CIFAR100

 = 100
 = 20
 = 1

AdaComm

(c) Fixed learning rate on CIFAR100.

Figure 9. ADACOMM on VGG-16: Achieves 3.3× speedup over fully synchronous SGD (in (b), 11.5 versus 38.0 minutes to achieve
4.5× 10−2 training loss).

0 5 10 15 20 25
Wall clock time / min

10-2

10-1

100

T
ra

in
in

g
lo

ss

ResNet-50, variable learning rate

 = 1
 = 5
 = 100

AdaComm

0 5 10 15 20 25
0

5

10

C
om

m
. P

er
io

d

(a) Variable learning rate on CIFAR10.

0 5 10 15 20 25
Wall clock time / min

100

T
ra

in
in

g
lo

ss

 = 1
 = 5
 = 100

0 5 10 15 20 25
0

5

10

C
om

m
. P

er
io

d

0 5 10 15 20 25
Wall clock time / min

100

T
ra

in
in

g
lo

ss

ResNet-50, fixed learning rate

 = 1
 = 5
 = 100

AdaComm

(b) Fixed learning rate on CIFAR10.

0 5 10 15 20 25
Wall clock time / min

1

2

3

4

T
ra

in
in

g
lo

ss

ResNet-50, fixed learning rate, CIFAR100

 = 1
 = 5
 = 100

AdaComm

0 5 10 15 20 25
0

5

10

C
om

m
. P

er
io

d
(c) Fixed learning rate on CIFAR100.

Figure 10. ADACOMM on ResNet-50: Achieves 1.4× speedup over Sync SGD (in (a), 18.8 versus 26.6 minutes to achieve 2× 10−2

training loss).

0 10 20 30 40
Wall clock time / min

0

0.5

1

1.5

2

2.5

T
ra

in
in

g
lo

ss

ResNet-50 with block momentum

 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40
0

5

10

C
om

m
. P

er
io

d

(a) ResNet-50 on CIFAR10.

0 10 20 30 40 50 60 70
Wall clock time / min

10-2

100

T
ra

in
in

g
lo

ss

VGG-16 with block momentum

 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40 50 60 70
0

10
20

C
om

m
. P

er
io

d

(b) VGG-16 on CIFAR10.

0 10 20 30 40
Wall clock time / min

0

1

2

3

4

5

T
ra

in
in

g
lo

ss

ResNet-50 w/ block momentum, CIFAR100

 = 1
 = 20
 = 100

AdaComm

0 10 20 30 40
0

10

20

C
om

m
. P

er
io

d

(c) ResNet-50 on CIFAR100.

Figure 11. ADACOMM with block momentum: Achieves 3.5× speedup over Sync SGD (in (b), 19.0 versus 66.7 minutes to achieve
3× 10−3 training loss).

every τ iterations. Based on the joint error-runtime analysis,
we design the first (to the best of our knowledge) adaptive
communication strategy called ADACOMM for distributed
deep learning. Experimental results using VGGNet and
ResNet show that the proposed method can achieve up to a
3× improvement in runtime, while achieving the same error

floor as fully synchronous SGD. Going beyond periodic-
averaging SGD, our idea of adapting frequency of averaging
distributed SGD updates can be easily extended to other
SGD frameworks including elastic-averaging (Zhang et al.,
2015), decentralized SGD (Lian et al., 2017) and parameter
server-based training (Dean et al., 2012).

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

REFERENCES

Arnold, B. C. and Groeneveld, R. A. Bounds on expecta-
tions of linear systematic statistics based on dependent
samples. The Annals of Statistics, 7(1):220–223, Jan-
uary 1979. doi: 10.1214/aos/1176344567. URL https:
//doi.org/10.1214/aos/1176344567.

Balles, L., Romero, J., and Hennig, P. Coupling adap-
tive batch sizes with learning rates. arXiv preprint
arXiv:1612.05086, 2016.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Chaudhari, P., Baldassi, C., Zecchina, R., Soatto, S., Tal-
walkar, A., and Oberman, A. Parle: parallelizing stochas-
tic gradient descent. arXiv preprint arXiv:1707.00424,
2017.

Chen, K. and Huo, Q. Scalable training of deep learning ma-
chines by incremental block training with intra-block par-
allel optimization and blockwise model-update filtering.
In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pp. 5880–5884.
IEEE, 2016.

Cui, H., Cipar, J., Ho, Q., Kim, J. K., Lee, S., Kumar, A.,
Wei, J., Dai, W., Ganger, G. R., Gibbons, P. B., et al. Ex-
ploiting bounded staleness to speed up big data analytics.
In 2014 USENIX Annual Technical Conference (USENIX
ATC 14), pp. 37–48, 2014.

Dalcı́n, L., Paz, R., and Storti, M. MPI for python. Journal
of Parallel and Distributed Computing, 65(9):1108–1115,
2005.

David, H. A. and Nagaraja, H. N. Order statistics. John
Wiley, Hoboken, N.J., 2003.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
neural information processing systems, pp. 1223–1231,
2012.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L.
Optimal distributed online prediction using mini-batches.
Journal of Machine Learning Research, 13(Jan):165–202,
2012.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P.
Slow and stale gradients can win the race: Error-runtime
trade-offs in distributed SGD. In Proceedings of the
Twenty-First International Conference on Artificial Intel-
ligence and Statistics, Proceedings of Machine Learning
Research, pp. 803–812. PMLR, 2018.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch SGD: training ImageNet in
1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gupta, S., Zhang, W., and Wang, F. Model accuracy and
runtime tradeoff in distributed deep learning: A system-
atic study. In IEEE 16th International Conference on
Data Mining (ICDM), pp. 171–180. IEEE, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., and Keutzer,
K. Firecaffe: near-linear acceleration of deep neural
network training on compute clusters. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2592–2600, 2016.

Jiang, Z., Balu, A., Hegde, C., and Sarkar, S. Collaborative
deep learning in fixed topology networks. In Advances in
Neural Information Processing Systems, pp. 5906–5916,
2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 14, pp. 583–598, 2014.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. Can decentralized algorithms outperform central-
ized algorithms? a case study for decentralized parallel
stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, pp. 5336–5346, 2017.

Lin, T., Stich, S. U., and Jaggi, M. Don’t use large mini-
batches, use local SGD. arXiv preprint arXiv:1808.07217,
2018.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. Communication-Efficient Learning
of Deep Networks from Decentralized Data. Interna-
tional Conference on Artificial Intelligenece and Statis-
tics (AISTATS), April 2017. URL https://arxiv.
org/abs/1602.05629.

Mitliagkas, I., Zhang, C., Hadjis, S., and Ré, C. Asynchrony
begets momentum, with an application to deep learning.
In 54th Annual Allerton Conference on Communication,

https://doi.org/10.1214/aos/1176344567
https://doi.org/10.1214/aos/1176344567
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Adaptive Communication Strategies to Achieve the Best Error-Runtime Trade-off in Local-Update SGD

Control, and Computing (Allerton), pp. 997–1004. IEEE,
2016.

Moritz, P., Nishihara, R., Stoica, I., and Jordan, M. I.
SparkNet: Training deep networks in spark. arXiv
preprint arXiv:1511.06051, 2015.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Seide, F. and Agarwal, A. CNTK: Microsoft’s open-source
deep-learning toolkit. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 2135–2135. ACM, 2016.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay
the learning rate, increase the batch size. arXiv preprint
arXiv:1711.00489, 2017a.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar,
A. S. Federated multi-task learning. In Advances in
Neural Information Processing Systems, pp. 4424–4434.
2017b. URL http://papers.nips.cc/paper/
7029-federated-multi-task-learning.
pdf.

Stich, S. U. Local SGD converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Su, H. and Chen, H. Experiments on parallel training of deep
neural network using model averaging. arXiv preprint
arXiv:1507.01239, 2015.

Wang, J. and Joshi, G. Cooperative SGD: A
unified framework for the design and analysis of
communication-efficient SGD algorithms. arXiv preprint
arXiv:1808.07576, 2018.

Yu, H., Yang, S., and Zhu, S. Parallel restarted SGD for
non-convex optimization with faster convergence and less
communication. arXiv preprint arXiv:1807.06629, 2018.

Zhang, J., De Sa, C., Mitliagkas, I., and Ré, C. Paral-
lel SGD: When does averaging help? arXiv preprint
arXiv:1606.07365, 2016.

Zhang, S., Choromanska, A. E., and LeCun, Y. Deep learn-
ing with elastic averaging SGD. In NIPS’15 Proceedings
of the 28th International Conference on Neural Informa-
tion Processing Systems, pp. 685–693, 2015.

Zhou, F. and Cong, G. On the convergence properties
of a k-step averaging stochastic gradient descent al-
gorithm for nonconvex optimization. arXiv preprint
arXiv:1708.01012, 2017.

http://papers.nips.cc/paper/7029-federated-multi-task-learning.pdf
http://papers.nips.cc/paper/7029-federated-multi-task-learning.pdf
http://papers.nips.cc/paper/7029-federated-multi-task-learning.pdf

