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ABSTRACT
Reinforcement learning (RL) tasks are challenging to implement, execute and test due to algorithmic instability,
hyper-parameter sensitivity, and heterogeneous distributed communication patterns. We argue for the separation
of logical component composition, backend graph definition, and distributed execution. To this end, we introduce
RLgraph, a library for designing and executing reinforcement learning tasks in both static graph and define-by-run
paradigms. The resulting implementations are robust, incrementally testable, and yield high performance across
different deep learning frameworks and distributed backends.

1 INTRODUCTION

The recent wave of new research and applications in deep
learning has been fueled by both hardware improvements
and deep learning frameworks simplifying design and train-
ing of neural networks (Chen et al., 2015; Abadi et al., 2016;
Seide & Agarwal, 2016; Paszke et al., 2017). Reinforce-
ment learning (RL) algorithms combined with deep neural
networks have in parallel emerged as an active area of re-
search due to promising results in complex control tasks
(Levine et al., 2016; Tobin et al., 2017; Silver et al., 2017).
However, their design and execution have not found similar
standardization. This is a consequence of the highly var-
ied resource requirements, scheduling, and communication
patterns found in constantly evolving RL methods. Imple-
mentations hence require a high degree of customization.

A number of RL libraries has emerged to focus on dis-
tinct aspects of managing such workloads. For exam-
ple, OpenAI baselines provides reference implementations
meant to reproduce specific benchmark environments (e.g.
Atari) (Sidor & Schulman, 2017). TensorForce provides
a declarative API focusing on ease of use in applications
(Schaarschmidt et al., 2018). Ray RLlib seeks to simplify
distributing RL workloads by moving from hand-designed
distributed communication to actor-based centralized execu-
tion on Ray (Liang et al., 2018; Moritz et al., 2017).

While these libraries serve different purposes, many of them
suffer from similar design problems leading to difficulties
in testing, distributed execution, and extensibility. The root
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cause of these difficulties lies in a lack of separation of con-
cerns. Composition of logical components defined within
an RL algorithm is tightly coupled with code fragments
specific to a deep learning framework (e.g. TensorFlow
calls to define placeholders and variables). This leads to
ill-defined APIs and also makes the reuse and testing of
components difficult. Similarly, the often complex dataflow
within RL algorithms is intertwined with control flow regu-
lating (distributed) execution, environment interaction, and
device management. This results in distributed execution
and local device strategies being tied to specific algorithms.

The central contribution of this paper is RLgraph, a mod-
ular framework to design and execute RL workloads from
high-level dataflow. RLgraph addresses these issues by
separating logical component composition, creation of oper-
ations, variables and placeholders, and finally local and dis-
tributed execution of the computation graph (Fig. 1). At the
core of our design is a novel component graph architecture
responsible for assembling and connecting algorithmic com-
ponents, such as buffers or neural networks, and for expos-
ing their functionality to a common API. Importantly, this
component graph exists independently of implementation
specific notions (e.g. TensorFlow variables), and instead
relies on generalized space objects and operations. This
means it can both be built for static graph and define-by-run
backends, and RLgraph currently supports both TensorFlow
(TF) and PyTorch (PT).

The component graph is built into a backend-dependent
computation graph via a graph builder which generates op-
erations, internal state (e.g. variables), device assignments,
and a registry for the model’s API. Developers are freed
from tedious manual placeholder and variable definition, as
they only need to specify type and shape of input spaces to
an algorithm’s outermost container component (root com-
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Figure 1. RLgraph stack for using and designing RL algorithms.

ponent). They can then rely on the RLgraph utilities to cen-
trally handle most aspects of connecting complex models,
e.g. splitting and merging complex nested spaces. A re-
source aware graph executor expands the component graph
to add operations for local and distributed device strategies,
e.g. by creating subgraph replicas for GPUs or managing
globally shared state. At runtime, the graph executor (e.g.
for TensorFlow) serves requests to the agent API by de-
termining relevant input placeholders and operations from
the op-registry and batching together all relevant operations
into a single session call. Our design provides numerous
advantages over many existing libraries:

1. Distributed execution. By separating concerns of
design and execution, resulting agents can be imple-
mented towards any distributed execution paradigm,
e.g. using distributed TensorFlow (Abadi et al., 2016),
Ray (Moritz et al., 2017), and plugins such as Uber’s
Horovod (Sergeev & Balso, 2018).

2. Static and define-by-run backends. The component
graph does not impose restrictions on its execution.
It supports end-to-end static graphs including control
flow (Yu et al., 2018) and define-by-run semantics (e.g.
PyTorch (Paszke et al., 2017)) through a unified execu-
tion interface.

3. Fast development cycles. RLgraph’s abstractions en-
ables users to focus on high level dataflow when com-
posing components. The build process manages back-
end scaffolding and creates operations based on user-
provided input spaces.

4. Incremental building and testing. Existing libraries
cannot efficiently identify problems in individual com-
ponents as they do not offer a modular build sys-
tem. In RLgraph, all components (including pre/post-
processing heuristics) are first-class citizens which are
individually built and incrementally tested.

In the remainder of the paper, we analyze RL design prob-
lems and survey existing libraries (§2). We then discuss the
design of RLgraph (§3, §4). In the evaluation, we compare
RLgraph against reference implementations using different

execution paradigms (§5). Our results show RLgraph can
improve sample throughput over existing implementations
by up to 180%. In related work, we discuss emerging ap-
proaches in programming models and optimization (§6).
RLgraph is available as open source1.

2 MOTIVATION

2.1 RL workloads

The central difficulty of executing RL workloads lies in the
need for frequent interaction with the problem environment
during training to evaluate and update the model. Environ-
ments may take the form of expensive physical systems
(robots), 3D scene simulators, games, or generally any sys-
tem exposing a state representation and an action interface.
This is in contrast to supervised workloads, where train-
ing data is typically entirely available in advance, thus en-
abling straightforward batching and synchronization strate-
gies (Sergeev & Balso, 2018). As a consequence of fast
moving and empirically driven research, RL algorithms
vary across all dimensions of execution (recently discussed
by Liang et al. (Liang et al., 2018)).

State management. Sample trajectories are often collected
in a distributed fashion where workers interact with dedi-
cated (simulation) environment copies. Algorithms manage
synchronization of model weights between one or multiple
learners and sample collectors, employing synchronous and
asynchronous strategies. In addition, they must process and
transmit samples to learners efficiently, sometimes involving
hierarchies of local and distributed shared buffers to split
post-processing tasks (Horgan et al., 2018).

Resource requirements and scale. Recent successes in
applying RL at scale in gaming (e.g. OpenAI Five (Ope-
nAI, 2018), AlphaGo (Silver et al., 2017)) were enabled by
training models on up to tens of thousands of CPU cores
and hundreds of GPUs. In contrast, models for environ-
ments which are not easily parallelized may be executed on
a single CPU but might have stringent latency requirements.

Models and optimization strategies. Neural networks
used to represent policies range from small multi-layer
perceptrons to complex hierarchical representations (Sil-
ver et al., 2016; Wayne et al., 2018). Learning approaches
vary from small incremental updates to expensive but in-
frequent policy optimizations over large batches, making
effective use of hardware accelerators difficult.

2.2 Existing abstractions

Reference implementations. Many libraries primarily
serve as reference implementations. For example, OpenAI

1https://github.com/rlgraph/rlgraph

https://github.com/rlgraph/rlgraph
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baselines (Sidor & Schulman, 2017), Keras-rl (Plappert,
2016) and Google’s Dopamine (Bellemare et al., 2018) pro-
vide collections of well-tuned algorithms on benchmarks
such as OpenAI gym (Brockman et al., 2016) or ALE (Belle-
mare et al., 2013). Nervana Coach (Caspi et al., 2017)
contains a similar collection but with added tools for vi-
sualizing progress, and facilities for hierarchical learning
and distributed training. Horizon focuses on building end-
to-end pipelines for off-policy training at Facebook (Gauci
et al., 2018).

Reference implementations share some components be-
tween algorithms (e.g. network architectures) but typically
ignore many practical considerations in favour of concise
code. Retooling them to different execution modes, envi-
ronment semantics, or device strategies (e.g. multi-GPU
support) requires significant work due to hard-coded, tightly
coupled designs.

Centralized control. Ray RLlib (Liang et al., 2018) de-
fines a set of abstractions for scalable RL. It relies on Ray’s
actor model (Moritz et al., 2017) to execute RL algorithms
via centralized control. At the core of RLlib’s hierarchical
task parallelism approach lies a set of optimizer classes.
Each optimizer implements a step() function which dis-
tributes sampling to remote actors, manages buffers, and
updates weights. For example, an AsyncReplayOptimizer
implements distributed prioritized experience replay (Hor-
gan et al., 2018). Each step, the optimizer loop pulls samples
from actors, inserts them into replay buffers, and performs
training on an asynchronous learner thread. A core claim
of RLlib is the separation of the execution plane in the op-
timizer from the definition of the RL algorithm within a
policy graph. However, each optimizer encapsulates both
local and distributed device execution. This means for ex-
ample that only the dedicated multi-gpu optimizer class
supports splitting input batches synchronously over multi-
ple GPUs. RLlib’s optimizer abstractions also mix Python
control flow, Ray calls, and TensorFlow calls throughout its
components. Algorithms implemented in RLlib are hence
not easily portable as training is principally meant to be
executed only on Ray.

Fixed end-to-end graphs. TensorForce (Schaarschmidt
et al., 2018) is a TF library providing a declarative inter-
face to a number of RL algorithms. TensorForce focuses
on applied use cases where control flow is driven by exter-
nal application contexts, not simulation environments. Its
end-to-end in-graph control flow design accelerates execu-
tion by avoiding unneeded context switches between Python
interpreter and TF runtime (Yu et al., 2018). A key dis-
advantage of this design (also adopted by Batch PPO and
TF-Agents (Hafner et al., 2017; Guadarrama et al., 2018))
is that partial data-flow is difficult to test due to limited
in-graph-debugging facilities. Further, execution assign-

ments via device and variable sharing decorators are not
separate from algorithm logic in the absence of a modular
build process.

3 FRAMEWORK DESIGN

3.1 Design principles

In the absence of a single dominant design pattern, frame-
works must resolve the tension between flexible prototyping,
reusable components, and scalable execution mechanisms.
RLgraph’s design is driven by a number of insights:

Separating algorithms and execution. RL algorithms re-
quire complex control flow to coordinate distributed state
and sample collection on one hand, and internal training
logic on the other hand. Separating these aspects is difficult
but essential to avoid re-implementing execution strategies.
RLgraph manages local execution via graph executors which
expose a clear interface between a high level API and the
component graph. Distributed coordination is delegated to
dedicated distributed executors (e.g. on Ray), or as part of
the graph build in the executor (distributed TF).

Reusable components with strict interfaces. Deep learn-
ing frameworks enable quick prototyping of neural networks
by exposing APIs to combine different types of layers with
compatible interfaces. Providing a similar set of interchange-
able components towards RL is complicated by the multi-
tude of learning and execution semantics. This is exacer-
bated by implementations containing definitions in multiple
execution contexts, e.g. Python control flow interleaved
with calls to TF runtime. Tight coupling of components,
and in turn a lack of well-defined interfaces and component
boundaries, means that re-usability is severely constrained.
RLgraph addresses this problem via its modular component
architecture. Components only interact via declared API
methods and guarantee reusability as they are fully specified
through compatible input spaces.

Incremental sub-graph testing. An undesirable conse-
quence of incorporating stochastic approximations at all
levels is numerical sensitivity and non-determinism (Na-
garajan et al., 2018). RL algorithms can require an over-
whelming number of hyperparameters (often in excess of
25). This has created severe issues for robustness and re-
producibility (Henderson et al., 2017; Mania et al., 2018).
Implementations are notoriously difficult to debug and test
in part because generating and verifying inputs and outputs
of partial dataflow is tedious (e.g. manually creating tensors
of required shapes). RLgraph enables sub-graph testing
by allowing users to send example data from input spaces
through arbitrary components and component combinations.
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3.2 Components and graphs

Components. Next, we discuss the design of RLgraph’s
component graph. For simplicity, we use TensorFlow as the
primary backend and describe the implementation of other
backends (e.g. PyTorch) in §4.2. RLgraph’s core abstrac-
tion is the Component class which encapsulates arbitrary
computations via graph functions. RLgraph components
are conceptually similar to DeepMind Sonnet’s components
(DeepMind, 2017) but offer more advanced notions of com-
position. Consider a replay buffer component which exposes
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Figure 2. Example memory component with three API methods.

functionality to insert experiences and sample mini-batches
according to priority weights. Implementing this buffer in
an imperative language such as Python is straight-forward,
but including it as part of a TensorFlow graph requires cre-
ating and managing many variables through control flow
operators (e.g. to update priorities). Composing multiple
such components in a re-usable way is difficult due to an
impedance mismatch between class-based programming in
a driver language, and functional transformations within
a dataflow graph. Using a define-by-run framework (e.g.
PyTorch) eases development but can create difficulties in
large scale distributed execution and program export.

Existing high-level APIs for neural networks such as Son-
net, (DeepMind, 2017), Keras (Chollet et al., 2015), Gluon
(Rochel et al., 2018), or TF.Learn (Tang, 2016) focus on
assembly and training of neural networks. Implementing
RL workloads in these frameworks usually means mixing
imperative Python control flow with deep learning graph
objects, leading to the design issues discussed before.

When building for a static graph backend, RLgraph’s com-
ponent API enables fast composition of end-to-end differ-
entiable dataflow graphs with in-graph control flow. The
graph builder and executor automatically manage burden-
some tasks such as variable and placeholder creation, scopes,
input spaces, and device assignments.

Example component. In figure 2, we show a simplified
prioritized replay buffer component. All components inherit
from the generic Component class and assemble logic by

combining their own sub-components. The buffer has a
segment tree sub-component to manage priority orders. It
exposes API methods to insert, sample, and update priorities
which under the hood map to three graph functions. The
difference between simple object methods and RLgraph API
methods is that registered API methods are identified and
managed in the build. Input shapes can be inferred automat-
ically via dataflow from inputs to the root component.

Developers can declare methods as API methods by call-
ing a register function (or in the future using a decorator).
Technically, not all functionality of a component needs to
be registered as an API method. Users can also implement
helper functions or utilities, e.g. using TensorFlow opera-
tions without including them as API methods, if they do not
need to be called from external components. Implementing
such utilities as RLgraph components with API methods is
nonetheless useful because these features can then be built
and tested as sub-graphs.

Components can call arbitrary sub-components (and their
sub-components). A component may have multiple API
methods where input spaces to one method depend on out-
puts of its other methods. The build process ensures com-
ponent computations and internal variables are only created
once its input spaces are known. Instead of creating implicit
device assignments, scopes, and variable sharing through
nested contexts, RLgraph explicitly manages these proper-
ties per component.

3.3 Building component graphs

RLgraph models are assembled in three distinct phases:

1. Component composition phase in which component
objects are defined and combined, including arbitrary
nesting of sub-components.

2. Assembly phase in which a type- and dimension-less
dataflow graph (the component graph) is created. This
is achieved by calling each of the root component’s API
methods once to traverse its graph. The API-methods
of the root component define the externally visible API
of the component graph.

3. Graph compilation/building phase in which all com-
putation operations are defined for each component.
Inside a component class, these definitions are placed
in special functions called graph functions. Graph func-
tions are the only places in the code where backend
dependent objects are used (e.g. TF ops).

There are also intermittent sub-phases for the initialization
of execution aspects (e.g. session management) which are
explained in §4. A wide range of off-the-shelf component
implementations such as buffers, optimizers, neural net-
works, or nested space splitters and mergers means that most
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control-flow construction.

users will only need to define few components to prototype
new algorithms (e.g. loss function, network architecture).

1. Component composition and nesting. All components
needed by a model are defined as Python objects. Compo-
nents are logically organized as nested subcomponents of a
root container component exposes the external API. Note
that an agent can in theory define multiple root components
to act and learn different policies in parallel.

2. Assembling the component graph. Next, users define
the dataflow through the model via connections between
components. Neither data types nor shape information are
necessary at this stage. Each component comes with a set of
API-methods (Figure 3). The data (tensors) are interpreted
inside these methods as abstract meta-graph operator ob-
jects, and their shapes and types will be inferred at build
time. This is achieved via decorators for API and graph
functions which provide options to split, merge, un-nest/re-
nest inputs and outputs. Return values of an API call can
now be passed into other API-methods, a sub-component’s
API-method, or into a graph function for numerical ma-
nipulation. RLgraph spaces can conveniently nest, merge,
split and fold time and batch dimensions of tensors through
components. In our experience, these utilities drastically
reduce development times as the different build phases au-
tomatically detect problems when manipulating complex
spaces, e.g. records containing multiple states and actions
with batch and time dimensions.

A simplified component graph assembly procedure is shown
in Algorithm 1. The root component exposing the external
interface (e.g. act, observe, update) and the input spaces for
the external API are passed to the component graph builder.
This builder generates the backend-independent dataflow
graph and the API by iterating over all API methods defined
in the root component. For each method, a component graph

Algorithm 1 Component graph build procedure

Input: component root, input spaces spaces
api = dict()
// Call all api methods once, generate op columns.
for method, record in root.api do
in ops records = list()
// Create one input record per API input param.
for param in record.input args do
in ops records.append(Op(param.space))

end for
// Traverse graph from root for this method.
out ops records = method(in ops records)
// Register method with graph inputs and output ops.
api[method] = [in ops records, out ops records]

end for
return ComponentGraph(root, api)

op is created for each of its parameters and looked up in
the input graph (type checks and default argument handling
omitted). The component graph is then traversed through
composed API functions which infer parameters and return
values for each call , and these are stored as records in the
component graph. Finally, the API method is registered in
an API registry which contains the input spaces and final
output ops (identified through the traversal).

3. Building computation graphs. All numerical opera-
tions occur in the third phase inside graph functions which
implement each component’s API. Operations defined in a
graph function include for example defining loss functions,
or sampling from a buffer. As sometimes the component’s
variables must be accessed to complete these operations
(e.g. a neural network layer must read its weights), RLgraph
ensures that any such computation function is only called
after all variables of a component have been defined. For ex-
ample, the memory component in Fig. 2 can only define its
buffers (e.g. TensorFlow variables) once it receives shapes
and types of buffer contents.

This barrier is enforced during the build, and custom com-
ponents only need to override a generic method for variable
creation. The method is called automatically and receives
types and shapes of variables as input arguments. Develop-
ers thus only need to specify the external input spaces to
the program (e.g. int/float boxes with batch and time ranks,
container spaces for nested data). In practice, these are pri-
marily state and action layouts defined by the environment.

We briefly describe the intuition behind the main build algo-
rithm. The build begins by calling all API methods defined
at the root from the provided input spaces until a component
is input-complete, i.e. all spaces for all its computations
are available. It then executes a completion function which
calls the component’s create variables, and subsequently its
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graph functions under the correct device and scope to define
its operations. Once a component is complete, the outputs
of its graph functions become available as input spaces for
subsequent components/graph functions. We then simply
perform breadth-first-search until there are no more com-
ponents to build or a constraint violation is detected. Input
placeholders and op names are created and stored for all ops
and output combinations defined in the API.

1state_space = FloatBox(shape=(64,), add_batch_rank=True,
2 add_time_rank=True)
3 # Dict space: 1 discrete, 1 continuous action.
4action_space = Dict(discrete=IntBox(),
5 cont=FloatBox(), add_batch_rank=True)
6policy = Policy("recurrent_policy.json", action_space)
7

8 # Construct sub graph from spaces, auto-gen placeholders.
9test = ComponentTest(policy, dict(nn_input=state_space),
10 action_space=action_space))
11 # Test with any inputs in the input space.
12action = test.test(policy.get_action, state_space.sample())

Listing 1. Testing sub-graphs from arbitrary spaces.

Testing sub-graphs. Identifying bugs in sub-tasks is diffi-
cult without a systematic mechanism for fine-granular input
generation. Consider the RLgraph test class example in
Listing 1. Here, we build a Policy component (with subcom-
ponents for a recurrent network and action selection) for the
specified state and action spaces (with options for batch and
time ranks). The test helper builds the sub-graph for the
policy via the phases describe above. Users can then run the
test and call an API method (e.g. by sampling an input from
the input space). This call is delegated to a graph executor
which executes the corresponding op. Every component
(including all pre/post processing and learning heuristics)
is continuously tested separately and in integration tests for
larger graphs (i.e. complete RL algorithms).

3.4 Agent API

Pre-built models can be configured via declarative configu-
rations similar to TensorForce (Schaarschmidt et al., 2018).
Configurations are provided as e.g. JSON documents speci-
fying an algorithm and its components (network with list of
layers, buffer, optimizers, device strategy etc.). The agent
interface defines a set of abstract methods which agents
must support to access certain execution modes (Listing 2).

The main difference between RLgraph and existing APIs
lies in strictly enforced component boundaries and more
explicit execution semantics. Fine-grained device control
is managed via a device map where each components oper-
ations and variables can be assigned separately and selec-
tively. Components may only exchange data along edges
of the component graph where an edge corresponds to a
call to a declared API method. This ensures well-defined
APIs and also avoids a common case where two components

are implemented to always be used together, thus making
individual reuse difficult. In RLgraph, all components can
be used and built individually from any input spaces. Next,
we discuss graph execution.

1abstract class rlgraph.agent:
2 # Build with default devices, variable sharing, ..
3 def build(options)
4 def get_actions(states, explore=True, preprocess=True)
5 # Update from internal buffer or external data.
6 def update(batch=None, sequence_indices=None)
7 # Observe samples for named environments.
8 def observe(state, action, reward, terminal, env_id)
9 def get_weights, def set_weights
10 def import_model, def export_model

Listing 2. High level agent API.

4 EXECUTING GRAPHS

4.1 Graph executors.

All build phases are invoked from a graph executor which
serves as the execution bridge between the component graph
and a backend framework. Graph executors expose an exe-
cute() method which takes name and arguments of an API
method and returns the result. They further manage any
backend-specific initialization, monitoring, and devices. For
example, the TensorFlow executor assumes the following
tasks. First, it initializes the TensorFlow session and vari-
ables, and builds hooks for summaries or profiling. For
operation execution, it fetches input placeholders and op
names from the graph operation registry and assembles
session inputs. Importantly, there is no other interaction
between user programs and graph other than through API
operations defined in the root component.

Device management. Graph executors also handle device
assignments by interleaving the build with a phase to ini-
tialize device strategies. Upon initialization, local device
information (e.g. CUDA visible devices) is read and com-
pared against user-defined device maps or synchronization
modes. Consider a synchronous multi-GPU strategy where
each input batch is split to one graph copy per GPU, with
gradients averaged for the final update. Managing this syn-
chronization requires the creation of additional operations
and variables for the device copies and the splitting and av-
eraging logic. The graph executor does this by creating core
component copies and connecting them through generic
input space splitters before building the component graph.
Since no variables or placeholders have been created at this
stage, components or sub-graphs can straightforwardly be
modified, replaced or extended. In addition to generic device
strategies, users can define a device map which specifies a
device assignment for each component’s ops and variables.

Distributed execution. RLgraph can be executed in dis-
tributed mode either with framework-specific mechanisms
or by using any other means to create and synchronize
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Figure 4. RLgraph execution stack.

agents. For example, when using distributed TensorFlow,
the TF graph executor can create the necessary parameter
server and global/local synchronization operations. It can
also plug-in third party tools such as Uber’s Horovod to
assume specific aspects of distributed communication for
a backend (e.g. ring all-reduce (Sergeev & Balso, 2018)).
To demonstrate RLgraph’s flexibility, we also built a Ray
executor which can execute arbitrary RLgraph implemen-
tations on Ray’s centralized execution model (Moritz et al.,
2017). In the evaluation, we show that our implementation
outperforms Ray’s native library RLlib (Liang et al., 2018).

Figure 4 illustrates how local execution and distributed co-
ordination are separated. When using Ray, we simply pass
an agent configuration to our Ray executor which creates
Ray workers, each locally generating their component graph
and graph executor to interact with environments. When
using non-centralized control (e.g. distributed TensorFlow),
the graph executor creates the necessary session and server
objects and handles parameter server synchronization on
each worker. Common features such as fault tolerance are
delegated to the underlying execution engines via a configu-
ration interpreted by the respective graph executors.

4.2 Backend support and code generation

Define-by-run graphs. While there are many advantages to
defining models as end-to-end computation graphs, define-
by-run semantics and eager execution are increasingly pop-
ular for ease of use. RLgraph’s component graph can be
executed both in static graph construction or define-by-run
mode. To implement a PyTorch backend, we only had to
modify the build procedure as follows. As there are no
placeholders, we simply create torch tensors during the
build phase as artificial placeholders to push through the
dataflow graph for shape and type inference of variables
(e.g. tensors used to store state). This is because even in
define-by-run mode, automatically dealing with nesting and

splitting of complex spaces across time and batch dimen-
sions can be handled via decorators. Next, after building
the component graph, we change the execution mode flag
for API methods from ’build’ to ’define-by-run’. In this
mode, instead of returning operation objects used for graph
construction, RLgraph simply directly evaluates a call-chain
of graph functions to retrieve the result. RLgraph hence pro-
vides a unified interface for executing its component graph
API in define-by-run and static-graph mode.

Autograph and graph optimization. An emerging but
early trend in deep learning frameworks are features to au-
tomatically convert imperative code to static computation
graphs. Examples of this include TensorFlow’s AutoGraph
(Moldovan et al., 2018) mechanism and PyTorch’s JIT trac-
ing. We encountered temporary limitations e.g. in Auto-
Graph on stateful operations which would need to convert
list manipulation to TF variable updates. We plan to merge
backend-dependent graph-function implementations into
single-stream functions, which will then be auto-converted
where possible.

The ad-hoc mixed-backend implementation style of many
RL libraries creates hurdles for systematically exploiting
graph generation. RLgraph provides a natural fit for these
features due to its organization of all backend code into
graph functions as logical units. Features such as auto-
graph can hence be integrated centrally in decorators during
the build process (similar to device assignment).

RLgraph’s separation of concerns opens up opportunities
for optimization at all stages. Emerging approaches in op-
timizing execution (e.g. via automated device placement
(Mirhoseini et al., 2018)), or backend-dependent compila-
tions can be integrated at the graph build stage.

5 EVALUATION

We evaluate RLgraph’s performance using different dis-
tributed execution engines, local deep learning backends,
and device strategies. Our aim is not to benchmark the
underlying frameworks but to show RLgraph can perform
competitively compared to native implementations.

5.1 Results

Build overhead. We begin by comparing the one-time build
overhead of RLgraph’s abstractions on different backends.
Recall there are two sources of overhead during initializa-
tion. First, the component graph is created by traversing
the graph from the root. Second, creating variables and
potentially static graph operations by letting input spaces
flow through the component graph requires moving through
components in the iterative build procedure.

In Figure 5a, we show component graph and main build
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overhead on a single memory component and a common RL
architecture (DQN) for the TensorFlow (TF) (v1.11) and
PyTorch (PT) (v0.4) backends. Overhead here refers to the
time spent on top of creating variables and operations, which
would have to be done irrespective of using RLgraph. The
overhead for both build phases to build a single component
(e.g. for modular performance testing and debugging) is less
than 100 ms. For a common architecture (dueling DQN with
prioritized replay, 43 components), the combined overhead
is about 1 s for TF and 650 ms for PT. PyTorch builds only
require a few milliseconds as variables (e.g. to represent
memory state) are native Python lists or NumPy arrays.
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Figure 5. TensorFlow and PyTorch backend comparison.

We also compare backend runtime performance by testing
act (inference) throughput on a single-threaded worker act-
ing on a vector of environments (Fig. 5b). We use the
Atari Pong environment and a standard 3-layer convolu-
tional architecture followed by a dueling network for action
selection. The TF backend (TF RLgraph) does not incur
runtime overhead because the component graph is discarded
after building. The graph executor only looks up the name
of the operation in the op registry and executes the corre-
sponding TF op. In define-by-run mode using PyTorch (PT
RLgraph), RLgraph incurs some overhead when calls are
routed through components. To understand this overhead,
we also implemented a bare-bones PyTorch actor, including
fine-tuning OpenMP and MKL settings (PT hand-tuned).

TensorFlow outperforms both PyTorch variants as batch-size
increases on a CPU, thus making it more suitable for per-
forming batch-acting and batch-postprocessing. RLgraph’s
PT backend carries overhead due to requiring additional
lookups when traversing the graph via API decorators. This
overhead becomes negligible as batch size increases and
runtime is dominated by the network forward passes. To
reduce this overhead when traversing the component graph,
we implemented some initial fast-path calls. For some cases,
the graph builder can identify edge-contractions (where calls
are edges and components are vertices), so define-by-run
execution through the relevant sub-graph requires no inter-
mediate component calls.

To the best of our knowledge, RLgraph represents the first
common interface to TF and PT on a component level. High-
level APIs like Keras only support static graph approaches.

Libraries such as Ray RLlib support TF/PT backends but
only on an algorithm level where entire implementations
can be parallelized via RLlib’s distributed abstractions. Us-
ing RLgraph, developers assemble logic via the backend-
independent API, and can then implement e.g. a new loss
component in their backend of choice.

Distributed execution on Ray. Next, we evaluate RLgraph
on the distributed execution engine Ray in comparison to
Ray’s native library, RLlib (v0.5.2). We implemented dis-
tributed prioritized experience replay (Ape-X (Horgan et al.,
2018)), a state-of-the-art distributed Q-learning algorithm
on our Ray executor. We further implemented a vector-
ized environment worker for sample collection, including
all heuristics described in the Ape-X paper and found in
RLlib’s implementation (e.g. worker-side prioritization).

All experiments were performed on Google Cloud with the
learner being hosted on a GPU instance with 1 active V100
GPU, 24 vCPUs and 104 GiB RAM. Sample collection
nodes had 64 vCPUs and 256 GiB RAM. Figure 6 shows
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Figure 6. Distributed sample throughput on Pong.

sampling performance on the Pong environment. The x-axis
represents the number of policy-evaluators/Ray-workers re-
spectively (RLlib, RLgraph), each initialized with a single
CPU, and the y-axis shows environment frames per second
(including frame skips). Each worker executed 4 environ-
ments, and we used 4 instances of replay memories to feed
the learner (we did not observe improvements using more
memories due to limited vCPUs on GPU nodes). All set-
tings were run with 8 sample nodes except 256 workers
(16 sample nodes) to ensure sufficient memory. RLgraph
outperforms RLlib by a large margin (185% on 16, 60% on
256 workers) despite implementing the same algorithm with
equivalent hyper-parameters, model size, and environments.
Performance for 16 workers is highest due to better resource
utilization. RLgraph also completes its learning tasks faster
due to improved implementations.

The reason for RLgraph’s performance is systematic com-
ponent analysis yielding insights into efficient sample pro-
cessing. For example, RLlib’s policy evaluators execute
multiple session calls to incrementally post-process batches.
RLgraph instead splits post-processing in incremental and
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batched parts to minimize calls to the TensorFlow runtime.
These effects can also be observed at the scale of a single
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Figure 7. Single task throughput and learning comparison.

task across different task lengths and number of environ-
ments (called sequentially). Figure 7a shows the requested
number of samples versus the achieved frames per second
using a single RayWorker (RLgraph) versus a policy eval-
uator (RLlib). Both use the same agent and configuration
as in the distributed setting (10 warm up runs, mean across
50 runs). RLgraph is not only more effective on a single en-
vironment, it also scales better on vectorized environments
due to faster accounting across environments and episodes.

We show learning results (Fig. 7b) to confirm that RLgraph’s
throughput is not at the cost of training performance. We
use RLlib’s provided tuned Pong configuration (32 workers).
In RL, the same code using the same hyper-parameters can
vary drastically across runs, so reliably comparing learning
is difficult (Henderson et al., 2017). We ran 10 random
seeds and averaged across the 3 best runs (both libraries
did not learn anything for some seeds as expected). In line
with throughput, RLgraph learns to solve (reward 21) Pong
substantially faster than RLlib.

Note that RLlib’s published results on Ape-X throughput
do not include updating without stating this explicitly, and
later reported results including updates2 are up to 130 k
frames per second on 256 workers (versus 170 k max for
RLgraph). Experimental versions of Ray’s new backend
include improved garbage collection of which RLgraph
would benefit to the same extent as RLlib3. Our results
show RLgraph’s execution-agnostic design can integrate
with external execution engines, and perform competitively.
While RLlib could adopt more efficient implementations,
our insight is that RLgraph can be used on Ray via few
wrapper classes. Implementing other distributed semantics
on Ray with RLgraph only requires extending the generic
Ray executor to implement a coordination loop. Finally,
RLgraph’s modularization helps visualizing computation
graphs when compared to programming models such as

2Source: RLlib authors, https://github.com/
ray-project/ray/issues/2466

3During experimentation using Ray’s original backend, we ex-
perienced some difficulties with the Ray engine, including memory
leaks and task initialization crashes.

RLlib’s, which scatter code across fragmented tasks. We
visualize both Ape-X implementations in Appendix A.2.
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Multi-GPU strategies. We also implemented device strat-
egy prototypes where the component graph is automatically
expanded during the build phase (e.g. to create sub-graph
replicas). When using a synchronous GPU replica strategy,
the update batch is internally split into multiple sub-batches,
and gradients are averaged across towers. Fig. 8 contains
Ape-X results using 1 and 2 V100 GPUs. We observe the
expected speed-up in convergence.

Distributed TensorFlow. Finally, we evaluate RLgraph
using the distributed TensorFlow backend on DeepMind’s
(DM) importance-weighted actor-learner architecture (IM-
PALA) (Espeholt et al., 2018). The authors have open-
sourced an optimized implementation4. IMPALA perhaps
best represents the end-to-end computation graph paradigm,
where even environment interaction is fused into the TF
graph. We implemented IMPALA in RLgraph to demon-
strate its ability to generate such graphs. To this end, RL-
graph provides generic execution components for graph-
fused environment stepping. IMPALA executes updates by
letting each actor perform a rollout step (100 samples) and
input its samples into a globally shared blocking queue. The
learner dequeues rollouts and uses a staging area to hide
GPU latency. Figure 9 compares throughput using the large
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network described in the paper on a DM lab 3D task (which
are more expensive to render than Atari tasks). We again
use a single V100 GPU for the learner and let 4 workers

4Code at: https://github.com/deepmind/
scalable_agent

https://github.com/ray-project/ray/issues/2466
https://github.com/ray-project/ray/issues/2466
https://github.com/deepmind/scalable_agent
https://github.com/deepmind/scalable_agent
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each share a 8 vCPU instance. RLgraph achieves about
10-15% higher mean throughput (5 runs) for fewer workers
until both implementations are limited by updates. DM’s
implementation exhibited higher variance due to subtle dif-
ferences in preprocessing tensors after unstaging. DM’s
code also carried out unneeded variable assignments in the
actor. Removing these yielded 20% improvement in a single-
worker setting for RLgraph. Emerging tools in graph opti-
mization (e.g. TF XLA, TVM (Chen et al., 2018)) can help
with optimizing data layouts and numerical transformations.
RLgraph helps most in improving high level dataflow as it
enforces well-defined interactions between components (c.f.
Appendix A.1). This in turn improves reasoning about the
complex design patterns found in RL algorithms.

5.2 Discussion

Our results show that using RLgraph to define algorithms via
combining backend-independent components yields high-
performing implementations across backends. Assembling
the graph through the different build phases only adds up to
one second of build overhead. Using Ray as a distributed
backend, we demonstrated that RLgraph run on its own
Ray executor outperforms Ray RLlib. This indicates that
wide-spread mixed backend (e.g. Python/TF) RL implemen-
tations can be significantly accelerated via careful dataflow
analysis, and without changing algorithm logic. Using
distributed TF, we found that RLgraph can help improve
dataflow in end-to-end static computation graphs. Our main
take-away is that developers can use RLgraph to focus on
logical component composition in RL independently of the
underlying execution paradigm.

6 RELATED WORK

RLgraph builds upon the experiences of many prior libraries
which we discussed in §2.2. Here, we discuss emerging
trends in programming models and optimizations.

6.1 Programming models

The success of deep learning frameworks has given rise
to several higher-level learning APIs seeking to free users
from dealing with lower level tensor operations. Keras
(Chollet et al., 2015) is a popular framework for quick
assembly and training of deep learning models with sup-
port for multiple static-graph backends (e.g. TensorFlow
(Abadi et al., 2016), CNTK (Seide & Agarwal, 2016),
MXNet (Chen et al., 2015)). Gluon provides a concise
API for imperative, dynamic neural networks on top of
MXNet (Rochel et al., 2018). TF.Learn offers a high level
API for constructing symbolic TensorFlow graphs (Tang,
2016). Among these frameworks, TensorFlow’s program-
ming model (Abadi et al., 2017) is distinct because it sup-
ports in-graph control-flow (Yu et al., 2018). A key issue

in the high-level APIs above is that they typically assume
control-flow to be implemented in the driver language (fre-
quently Python). RLgraph bridges this gap by providing
Sonnet-style (DeepMind, 2017) composable components,
with the addition of API methods handling in-graph control
flow, or define-by-run graph execution.

6.2 Graph optimizations and code generation

Programming models for machine learning and in partic-
ular deep learning typically prioritize high level APIs and
usability over performance. Code is written in a multitude
of languages and libraries, and is executed over a variety
of backends. Frameworks like Weld (Palkar et al., 2017)
optimize performance by integrating library calls into a com-
mon intermediate representation which is then mapped to
efficient multi-threaded code. Mirhoseini et al. identify
effective TensorFlow device placements via hierarchical re-
inforcement learning (Mirhoseini et al., 2018). FlexFlow
further improves parallelization strategies for specific de-
ployments using an execution simulator and fine-grained
randomized search across execution dimensions (Jia et al.,
2018). TVM is a compiler stack to optimize tensor opera-
tions across diverse hardware backends (Chen et al., 2018).
RLgraph constructs component graphs irrespective of ex-
ecution semantics. Optimizations can be performed at the
level of graph executors by including them in the build.

The proliferation of deep learning frameworks which often
focus development efforts on Python front-ends has also
created the need for new shared representations. The aim
of standard formats such as ONNX (Facebook Inc., 2017)
is to enable model interoperability, define a common route
from prototyping to production deployment, and to create a
shared runtime for optimizations. From a RL perspective,
the aim of deployable graphs is more difficult to achieve due
to the extensive control-flow and state management in RL
workloads. Implementing code using e.g. TensorFlow con-
trol flow operators allows immediate export, optimization
and deployment of the entire RL program but can slow down
development. Framework developers have recognized this
tension and are designing tools such as AutoGraph in TF for
automatic graph generation. As these initiatives mature, we
expect RLgraph components to merge backend-dependent
graph functions by leveraging automatic graph generation.

7 CONCLUSION

RLgraph is a new open source framework for designing and
executing computation graphs for reinforcement learning.
RLgraph’s component graph abstraction allows develop-
ers to separate the composition of logical components in
a RL algorithm from their local backend and distributed
execution. The resulting implementations are fast, robust,
incrementally testable, and easy to extend or re-use.
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A VISUALIZING COMPUTATION GRAPHS

A.1 IMPALA

To illustrate how RLgraph helps organize computation
graphs, we visualize the IMPALA implementation discussed
in the evaluation.

Figure 10 illustrates the RLgraph implementation using Ten-
sorBoard. As each component’s scope and variables are
managed by RLgraph during the build, device assignments
and dataflow are easy to visualize automatically with exist-
ing tools. Here, green components are on the GPU while
blue components are on the CPU. The dataflow from bottom
to top clearly illustrates how tensors are moved from the
shared queue, preprocessed, then moved to a staging area.
The prior batch is taken from the staging area, then pre-
processed and passed to the policy and loss function. The
optimizer and policy interact with a shared scope as learner
and workers share policy variables.

Mixed colours imply that a component has multiple sub-
components on different devices. For example, the IMPALA
loss-function computes an importance correction on the
CPU as it is difficult to parallelize, so the loss-component
has mixed assignments. We found that RLgraph specifi-
cally helps to make more effective use of existing tools like
TensorBoard, as clean visualizations are key to identifying
problems (e.g. with device assignments).

In Figures 11 and 12 (split due to size in TensorBoard), we
show for comparison a visualization of DeepMind’s open
source IMPALA implementation. As is common for self-
contained RL scripts, scopes, devices, and operation names
are handled on an ad-hoc basis. The resulting graph, while
implementing the same logic as our code, is highly frag-
mented in the visualization, making insights into potential
problems much more difficult.

A.2 Ape-X

When executing on Ray, computation graphs are fragmented
into separate tasks represented by Ray actors, as opposed
to end-to-end differentiable graphs such as in distributed
TensorFlow (Abadi et al., 2017; Yu et al., 2018). In RLlib,
task code is scattered across agent classes, policy graphs,
and backend-specific utilities. Understanding dataflow be-
tween components is difficult due to a lack of consistent
modularization across imperative function calls. RLgraph’s
separation of execution semantics and graph design results
in consistent graph creation irrespective of the backend used.
In Figure 13, we show the corresponding TensorBoard visu-
alization for RLgraph’s Ape-X learner. Figures 14 and 15
show RLlib’s highly fragmented Ape-X graph.

Figure 10. TensorBoard visualization of RLgraph’s IMPALA
learner. As all operations and variables are organized in com-
ponents under separate scopes, dataflow between components is
clear.
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Figure 11. TensorBoard visualization of DeepMind’s IMPALA learner (left).

Figure 12. TensorBoard visualization of DeepMind’s IMPALA learner (right).
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Figure 13. TensorBoard visualization of RLgraph’s Ape-X learner.
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Figure 14. TensorBoard visualization of RLlib’s Ape-X learner (left).

Figure 15. TensorBoard visualization of RLlib’s Ape-X learner (right).


