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ABSTRACT
Continuous integration is an indispensable step of modern software engineering practices to systematically
manage the life cycles of system development. Developing a machine learning model is no difference — it is an
engineering process with a life cycle, including design, implementation, tuning, testing, and deployment. However,
most, if not all, existing continuous integration engines do not support machine learning as first-class citizens.

In this paper, we present ease.ml/ci, to our best knowledge, the first continuous integration system for machine
learning. The challenge of building ease.ml/ci is to provide rigorous guarantees, e.g., single accuracy point
error tolerance with 0.999 reliability, with a practical amount of labeling effort, e.g., 2K labels per test. We design
a domain specific language that allows users to specify integration conditions with reliability constraints, and
develop simple novel optimizations that can lower the number of labels required by up to two orders of magnitude
for test conditions popularly used in real production systems.

1 INTRODUCTION
In modern software engineering (Van Vliet et al., 2008),
continuous integration (CI) is an important part of the best
practice to systematically manage the life cycle of the de-
velopment efforts. With a CI engine, the practice requires
developers to integrate (i.e., commit) their code into a shared
repository at least once a day (Duvall et al., 2007). Each
commit triggers an automatic build of the code, followed
by running a pre-defined test suite. The developer receives
a pass/fail signal from each commit, which guarantees
that every commit that receives a pass signal satisfies prop-
erties that are necessary for product deployment and/or pre-
sumed by downstream software.

Developing machine learning models is no different from
developing traditional software, in the sense that it is also
a full life cycle involving design, implementation, tuning,
testing, and deployment. As machine learning models are
used in more task-critical applications and are more tightly
integrated with traditional software stacks, it becomes in-
creasingly important for the ML development life cycle also
to be managed following systematic, rigid engineering disci-
pline. We believe that developing the theoretical and system
foundation for such a life cycle management system will be
an emerging topic for the SysML community.
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Figure 1. The workflow of ease.ml/ci.

In this paper, we take the first step towards building, to our
best knowledge, the first continuous integration system for
machine learning. The workflow of the system largely fol-
lows the traditional CI systems (Figure 1), while it allows
the user to define machine-learning specific test conditions
such as the new model can only change at most 10% predic-
tions of the old model or the new model must have at least
1% higher accuracy than the old model. After each commit
of a machine learning model/program, the system automat-
ically tests whether these test conditions hold, and return
a pass/fail signal to the developer. Unlike traditional
CI, CI for machine learning is inherently probabilistic. As
a result, all test conditions are evaluated with respect to a
(ε, δ)-reliability requirement from the user, where 1−δ (e.g.,
0.9999) is the probability of a valid test and ε is the error
tolerance (i.e., the length of the (1− δ)-confidence interval).
The goal of the CI engine is to return the pass/fail signal
that satisfies the (ε, δ)-reliability requirement.
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Technical Challenge: Practicality At the first glance of
the problem, there seems to exist a trivial implementation:
For each committed model, drawN labeled data points from
the testset, get an (ε, δ)-estimate of the accuracy of the new
model, and test whether it satisfies the test conditions or not.
The challenge of this strategy is the practicality associated
with the label complexity (i.e., how large N is). To get an
(ε = 0.01, δ = 1 − 0.9999) estimate of a random variable
ranging in [0, 1], if we simply apply Hoeffding’s inequality,
we need more than 46K labels from the user (similarly,
63K labels for 32 models in a non-adaptive fashion and
156K labels in a fully adaptive fashion, see Section 3)!
The technical contribution of this work is a collection of
techniques that lower the number of samples, by up to two
orders of magnitude, that the system requires to achieve the
same reliability.

In this paper, we make contributions from both the system
and machine learning perspectives.

1. System Contributions. We propose a novel system
architecture to support a new functionality compensat-
ing state-of-the-art ML systems. Specifically, rather
than allowing users to compose adhoc, free-style test
conditions, we design a domain specific language that
is more restrictive but expressive enough to capture
many test conditions of practical interest.

2. Machine Learning Contributions. On the machine
learning side, we develop simple, but novel, optimiza-
tion techniques to optimize for test conditions that can
be expressed within the domain-specific language that
we designed. Our techniques cover different modes of
interaction (fully adaptive, non-adaptive, and hybrid),
as well as many popular test conditions that industrial
and academic partners found useful. For a subset of
test conditions, we are able to achieve up to two orders
of magnitude savings on the number of labels that the
system requires.

Beyond these specific technical contributions, conceptually,
this work illustrates that enforcing and monitoring an ML
development life cycle in a rigorous way does not need to be
expensive. Therefore, ML systems in the near future could
afford to support more sophisticated monitoring functional-
ity to enforce the “right behavior” from the developer.

In the rest of this paper, we start by presenting the design
of ease.ml/ci in Section 2. We then develop estimation
techniques that can lead to strong probabilistic guarantees
using test datasets with moderate labeling effort. We present
the basic implementation in Section 3 and more advanced
optimizations in Section 4. We further verify the correctness
and effectiveness of our estimation techniques via an exper-
imental evaluation (Section 5). We discuss related work in
Section 6 and conclude in Section 7.

2 SYSTEM DESIGN
We present the design of ease.ml/ci in this section. We
start by presenting the interaction model and workflow as il-
lustrated in Figure 1. We then present the scripting language
that enables user interactions in a declarative manner. We
discuss the syntax and semantics of individual elements, as
well as their physical implementations and possible exten-
sions. We end up with two system utilities, a “sample size
estimator” and a “new testset alarm,” the technical details
of which will be explained in Sections 3 and 4.

2.1 Interaction Model
ease.ml/ci is a continuous integration system for ma-
chine learning. It supports a four-step workflow: (1) user
describes test conditions in a test configuration script with
respect to the quality of an ML model; (2) user provides N
test examples where N is automatically calculated by the
system given the configuration script; (3) whenever devel-
oper commits/checks in an updated ML model/program, the
system triggers a build; and (4) the system tests whether the
test condition is satisfied and returns a “pass/fail” signal to
the developer. When the current testset loses its “statistical
power” due to repetitive evaluation, the system also decides
on when to request a new testset from the user. The old
testset can then be released to the developer as a validation
set used for developing new models.

We also distinguish between two teams of people: the in-
tegration team, who provides testset and sets the reliabil-
ity requirement; and the development team, who commits
new models. In practice, these two teams can be identical;
however, we make this distinction in this paper for clarity,
especially in the fully adaptive case. We call the integration
team the user and the development team the developer.

2.2 A ease.ml/ci Script
ease.ml/ci provides a declarative way for users to spec-
ify requirements of a new machine learning model in terms
of a set of test cases. ease.ml/ci then compiles such
specifications into a practical workflow to enable evalu-
ation of test cases with rigorous theoretical guarantees.
We present the design of the ease.ml/ci scripting lan-
guage, followed by its implementation as an extension to
the .travis.yml format used by Travis CI.

Logical Data Model The core part of a ease.ml/ci
script is a user-specified condition for the continuous in-
tegration test. In the current version, such a condition is
specified over three variables V = {n, o, d}: (1) n, the
accuracy of the new model; (2) o, the accuracy of the old
model; and (3) d, the percentage of new predictions that are
different from the old ones (n, o, d ∈ [0, 1]).

A detailed overview over the exact syntax and its semantics
is given in Appendix A.
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Adaptive vs. Non-adaptive Integration A prominent
difference between ease.ml/ci and traditional continu-
ous integration system is that the statistical power of a test
dataset will decrease when the result of whether a new model
passes the continuous integration test is released to the de-
veloper. The developer, if she wishes, can adapt her next
model to increase its probability to pass the test, as demon-
strated by the recent work on adaptive analytics (Blum &
Hardt, 2015; Dwork et al., 2015). As we will see, ensuring
probabilistic guarantee in the adaptive case is more expen-
sive as it requires a larger testset. ease.ml/ci allows the
user to specify whether the test is adaptive or not with a flag
adaptivity (full, none, firstChange):
• If the flag is set to full, ease.ml/ci releases

whether the new model passes the test immediately
to the developer.

• If the flag is set to none, ease.ml/ci accepts all
commits, however, sends the information of whether
the model really passes the test to a user-specified,
third-party, email address that the developer does not
have access to.

• If the flag is set to firstChange, ease.ml/ci
allows full adaptivity before the first time that the test
passes (or fails), but stops afterwards and requires a
new testset (see Section 3 for more details).

Example Scripts A ease.ml/ci script is implemented
as an extension to the .travis.yml file format used in
Travis CI by adding an ml section. For example,

ml:
- script : ./test_model.py
- condition : n - o > 0.02 +/- 0.01
- reliability: 0.9999
- mode : fp-free
- adaptivity : full
- steps : 32

This script specifies a continuous test process that, with
probability larger than 0.9999, accepts the new commit only
if the new model has two points higher accuracy than the old
one. This estimation is conducted with an estimation error
within one accuracy point in a “false-positive free” manner.
We give a detailed definition, as well as a simple example of
the two modes fp-free and fn-free in Appendix A.2.
The system will release the pass/fail signal immediately
to the developer, and the user expects that the given testset
can be used by as many as 32 times before a new testset has
to be provided to the system.

Similarly, if the user wants to specify a non-adaptive inte-
gration process, she can provide a script as follows:

ml:
- script : ./test_model.py
- condition : d < 0.1 +/- 0.01
- reliability: 0.9999
- mode : fp-free
- adaptivity : none -> xx@abc.com
- steps : 32

It accepts each commit but sends the test result to the email
address xx@abc.com after each commit. The assumption
is that the developer does not have access to this email
account and therefore, cannot adapt her next model.

Discussion and Future Extensions The current syntax
of ease.ml/ci is able to capture many use cases that
our users find useful in their own development process,
including to reason about the accuracy difference between
the new and old models, and to reason about the amount of
changes in predictions between the new and old models in
the test dataset. In principle, ease.ml/ci can support a
richer syntax. We list some limitations of the current syntax
that we believe are interesting directions for future work.

1. Beyond accuracy: There are other important quality
metrics for machine learning that the current system
does not support, e.g., F1-score, AUC score, etc. It is
possible to extend the current system to accommodate
these scores by replacing the Bennett’s inequality with
the McDiarmid’s inequality, together with the sensitiv-
ity of F1-score and AUC score. In this new context,
more optimizations, such as using stratified samples,
are possible for skewed cases.

2. Ratio statistics: The current syntax of ease.ml/ci
intentionally leaves out division (“/”) and it would be
useful for a future version to enable relative compari-
son of qualities (e.g., accuracy, F1-score, etc.).

3. Order statistics: Some users think that order statistics
are also useful, e.g., to make sure the new model is
among top-5 models in the development history.

Another limitation of the current system is the lack of being
able to detect a domain drift or concept ship. In princi-
ple, this could be thought of as a similar process of CI –
instead of fixing the test set and testing multiple models,
monitoring concept shift is to fix a single model and test its
generalization over multiple test sets overtime.

The current version of ease.ml/ci does not provide sup-
port for all these features. However, we believe that many
of them can be supported by developing similar statistical
techniques (see Sections 3 and 4).

2.3 System Utilities
In traditional continuous integration, the system often as-
sumes that the user has the knowledge and competency
to build the test suite all by herself. This assumption is
too strong for ease.ml/ci— among the current users of
ease.ml/ci, we observe that even experienced software
engineers in large tech companies can be clueless on how
to develop a proper testset for a given reliability require-
ment. One prominent contribution of ease.ml/ci is a
collection of techniques that provide practical, but rigorous,
guidelines for the user to manage testsets: How large does
the testset need to be? When does the system need a new
freshly generated testset? When can the system release the
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testset and “downgrade” it into a development set? While
most of these questions can be answered by experts based
on heuristics and intuition, the goal of ease.ml/ci is
to provide systematic, principled guidelines. To achieve
this goal, ease.ml/ci provides two utilities that are not
provided in systems such as Travis CI.

Sample Size Estimator This is a program that takes as
input a ease.ml/ci script, and outputs the number of
examples that the user needs to provide in the testset.

New Testset Alarm This subsystem is a program that takes
as input a ease.ml/ci script as well as the commit his-
tory of machine learning models, and produces an alarm
(e.g., by sending an email) to the user when the current
testset has been used too many times and thus cannot be
used to test the next committed model. Upon receiving the
alarm, the user needs to provide a new testset to the system
and can also release the old testset to the developer.

An impractical implementation of these two utilities is easy
— the system alarms the user to request a new testset after
every commit and estimates the testset size using the Hoeffd-
ing bound. However, this can result in testsets that require
tremendous labeling effort, which is not always feasible.

What is “Practical?” The practicality is certainly user
dependent. Nonetheless, from our experience working with
different users, we observe that providing 30, 000 to 60, 000
labels for every 32 model evaluations seems reasonable for
many users: 30, 000 to 60, 000 is what 2 to 4 engineers can
label in a day (8 hours) at a rate of 2 seconds per label, and
32 model evaluations imply (on average) one commit per
day in a month. Under this assumption, the user only needs
to spend one day per month to provide test labels with a
reasonable number of labelers. If the user is not able to
provide this amount of labels, a “cheap mode”, where the
number of labels per day is easily reduced by a factor 10x, is
achieved for most of the common conditions by increasing
the error tolerance by a single or two percentage points.

Therefore, to make ease.ml/ci a useful tool for real-
world users, these utilities need to be implemented in a more
practical way. The technical contribution of ease.ml/ci
is a set of techniques that we will present next, which can
reduce the number of samples the system requests from the
user by up to two orders of magnitude.

3 BASELINE IMPLEMENTATION
We describe the techniques to implement ease.ml/ci for
user-specified conditions in the most general case. The tech-
niques that we use involve standard Hoeffding inequality
and a technique similar to Ladder (Blum & Hardt, 2015) in
the adaptive case. This implementation is general enough
to support all user-specified conditions currently supported
in ease.ml/ci, however, it can be made more practical
when the test conditions satisfy certain conditions. We leave
optimizations for specific conditions to Section 4.

3.1 Sample Size Estimator for a Single Model
Estimator for a Single Variable One building block of
ease.ml/ci is the estimator of the number of samples
one needs to estimate one variable (n, o, and d) to ε accuracy
with 1− δ probability. We construct this estimator using the
standard Hoeffding bound.

A sample size estimator n : V × [0, 1]3 7→ N is a function
that takes as input a variable, its dynamic range, error toler-
ance and success rate, and outputs the number of samples
one needs in a testset. With the standard Hoeffding bound,

n(v, rv, ε, δ) =
−r2v ln δ

2ε2

where rv is the dynamic range of the variable v, ε the error
tolerance, and 1− δ the success probability.

Recall that we makes use of the exact grammar used to
define the test conditions. A formal definition of the syntax
can be found in Appendix A.1.

Estimator for a Single Clause Given a clauseC (e.g. n−
o > 0.01) with a left-hand side expression Φ, a comparison
operator cmp (> or <), and a right-hand side constant, the
sample size estimator returns the number of samples one
needs to provide an (ε, δ)-estimation of the left-hand side
expression. This can be done with a trivial recursion:

1. n(EXP = c * v, ε, δ) = n(v, rv, ε/c, δ), where c is
a constant. We have n(c * v, ε, δ) =

−c2r2v ln δ
2ε2 .

2. n(EXP1 + EXP2, ε, δ) = max{n(EXP1, ε1,
δ
2 ),

n(EXP2, ε2,
δ
2 )}, where ε1 + ε2 < ε. The same equal-

ity holds similarly for n(EXP1 - EXP2, ε, δ).

Estimator for a Single Formula Given a formula F that
is a conjunction over k clauses C1, ..., Ck, the sample size
estimator needs to guarantee that it can satisfy each of the
clause Ci. One way to build such an estimator is

3. n(F = C1 ∧ . . . ∧ Ck, ε, δ) = maxi n(Ci, ε,
δ
k ).

Example Given a formula F , we now have a simple algo-
rithm for sample size estimation. For
F :- n - 1.1 * o > 0.01 +/- 0.01 /\ d < 0.1 +/- 0.01

the system solves an optimization problem:

n(F, ε, δ) = min
ε1+ε2=ε
ε1,ε2∈[0,1]

max{
− ln δ

4

2ε21
,
−1.12 ln δ

4

2ε22
,
− ln δ

2

2ε2
}.

3.2 Non-Adaptive Scenarios
In the non-adaptive scenario, the system evaluates H mod-
els, without releasing the result to the developer. The result
can be released to the user (the integration team).
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Sample Size Estimation Estimation of sample size is
easy in this case because all H models are independent.
With probability 1− δ, ease.ml/ci returns the right an-
swer for each of the H models, the number of samples
one needs for formula F is simply n(F, ε, δH ). This follows
from the standard union bound. Given the number of mod-
els that user hopes to evaluate (specified in the steps field
of a ease.ml/ci script), the system can then return the
number of samples in the testset.

New Testset Alarm The alarm for users to provide a new
testset is easy to implement in the non-adaptive scenario.
The system maintains a counter of how many times the
testset has been used. When this counter reaches the pre-
defined budget (i.e., steps), the system requests a new
testset from the user. In the meantime, the old testset can be
released to the developer for future development process.

3.3 Fully-Adaptive Scenarios
In the fully-adaptive scenario, the system releases the test
result (a single bit indicating pass/fail) to the developer.
Because this bit leaks information from the testset to the
developer, one cannot use union bound anymore as in the
non-adaptive scenario.

A trivial strategy exists for such a case — for every model,
uses a different testset. In this case, the number of samples
required isH ·n(F, ε, δH ). This can be improved by applying
a adaptive argument similar to Ladder (Blum & Hardt, 2015)
as follows.

Sample Size Estimation For the fully adaptive scenario,
ease.ml/ci uses the following way to estimate the sam-
ple size for an H-step process. The intuition is simple.
Assume that a developer is deterministic or pseudo-random,
her decision on the next model only relies on all the previ-
ous pass/fail signals and the initial model H0. For H
steps, there are only 2H possible configurations of the past
pass/fail signals. As a result, one only needs to enforce
the union bound on all these 2H possibilities. Therefore, the
number of samples one needs is n(F, ε, δ

2H
).

Is the Exponential Term too Impractical? The im-
proved sample size n(F, ε, δ

2H
) is much smaller than the

one, H · n(F, ε, δH ), required by the trivial strategy. Read-
ers might worry about the dependency on H for the fully
adaptive scenario. However, for H that is not too large, e.g.,
H = 32, the above bound can still lead to practical number
of samples as the δ

2H
is within a logarithm term. As an

example, consider the following simple condition:

F :- n > 0.8 +/- 0.05.

With H = 32, we have

n(F, ε,
δ

2H
) =

ln 2H − ln δ

2ε2
.

Take δ = 0.0001 and ε = 0.05, we have n(F, ε, δ
2H

) =
6, 279. Assuming the developer checks in the best model
everyday, this means that every month the user needs to
provide only fewer than seven thousand test samples, a
requirement that is not too crazy. However, if ε = 0.01, this
blows up to 156, 955, which is less practical. We will show
how to tighten this bound in Section 4 for a sub-family of
test conditions.

New Testset Alarm Similar to the non-adaptive scenario,
the alarm for requesting a new testset is trivial to implement
— the system requests a new testset when it reaches the pre-
defined budget. At that point, the system can release the
testset to the developer for future development.

3.4 Hybrid Scenarios
One can obtain a better bound on the number of required
samples by constraining the information being released to
the developer. Consider the following scenario:

1. If a commit fails, returns Fail to the developer;
2. If a commit passes, (1) returns Pass to the developer,

and (2) triggers the new testset alarm to request a new
testset from the user.

Compared with the fully adaptive scenario, in this scenario,
the user provides a new testset immediately after the devel-
oper commits a model that passes the test.

Sample Size Estimation Let H be the maximum number
of steps the system supports. Because the system will re-
quest a new testset immediately after a model passes the
test, it is not really adaptive: As long as the developer con-
tinues to use the same testset, she can assume that the last
model always fails. Assume that the user is a deterministic
function that returns a new model given the past history and
past feedback (a stream of Fail), there are onlyH possible
states that we need to apply union bound. This gives us the
same bound as the non-adaptive scenario: n(F, ε, δH ).

New Testset Alarm Unlike the previous two scenarios,
the system will alarm the user whenever the model that she
provides passes the test or reaches the pre-defined budget
H , whichever comes earlier.

Discussion It might be counter-intuitive that the hybrid
scenario, which leaks information to the developer, has the
same sample size estimator as the non-adaptive case. Given
the maximum number of steps that the testset supports, H ,
the hybrid scenario cannot always finish all H steps as it
might require a new testset in H ′ � H steps. In other
words, in contrast to the fully adaptive scenario, the hybrid
scenario accommodates the leaking of information not by
adding more samples, but by decreasing the number of steps
that a testset can support.

The hybrid scenario is useful when the test is hard to pass
or fail. For example, imagine the following condition:

F :- n - o > 0.1 +/- 0.01
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That is, the system only accepts commits that increase the
accuracy by 10 accuracy points. In this case, the developer
might take many developing iterations to get a model that
actually satisfies the condition.

3.5 Evaluation of a Condition
Given a testset that satisfies the number of samples given
by the sample size estimator, we obtain the estimates of the
three variables used in a clause, i.e., n̂, ô, and d̂. Simply
using these estimates to evaluate a condition might cause
both false positives and false negatives. In ease.ml/ci,
we instead replace the point estimates by their correspond-
ing confidence intervals, and define a simple algebra over
intervals (e.g., [a, b] + [c, d] = [a+ c, b+ d]), which is used
to evaluate the left-hand side of a single clause. A clause
still evaluates to {True, False, Unknown}. The system
then maps this three-value logic into a two-value logic given
user’s choice of either fp-free or fn-free.

3.6 Use Cases and Practicality Analysis
The baseline implementation of ease.ml/ci relies on
standard concentration bounds with simple, but novel, twists
to the specific use cases. Despite its simplicity, this imple-
mentation can support real-world scenarios that many of our
users find useful. We summarize five use cases and analyze
the number of samples required from the user. These use
cases are summarized from observing the requirements from
the set of users we have been supporting over the last two
years, ranging from scientists at multiple universities, to real
production applications provided by high-tech companies.
([c] and [epsilon] are placeholders for constants.)

(F1: Lower Bound Worst Case Quality)

F1 :- n > [c] +/- [epsilon]
adaptivity :- none
mode :- fn-free

This condition is used for quality control to avoid the cases
that the developer accidentally commits a model that has
an unacceptably low quality or has obvious quality bugs.
We see many use cases of this condition in non-adaptive
scenario, most of which need to be false-negative free.

(F2: Incremental Quality Improvement)

F2 :- n - o > [c] +/- [epsilon]
adaptivity :- full
mode :- fp-free
([c] is small)

This condition is used for making sure that the machine
learning application monotonically improves over time.
This is important when the machine learning application is
end-user facing, in which it is unacceptable for the quality to
drop. In this scenario, it makes sense for the whole process
to be fully adaptive and false-positive free.

1-δ ε
F1, F4 F2, F3

none full none full
0.99 0.1 404 1340 1753 5496
0.99 0.05 1615 5358 7012 21984
0.99 0.025 6457 21429 28045 87933
0.99 0.01 40355 133930 175282 549581
0.999 0.1 519 1455 2214 5957
0.999 0.05 2075 5818 8854 23826
0.999 0.025 8299 23271 35414 95302
0.999 0.01 51868 145443 221333 595633
0.9999 0.1 634 1570 2674 6417
0.9999 0.05 2536 6279 10696 25668
0.9999 0.025 10141 25113 42782 102670
0.9999 0.01 63381 156956 267385 641684
0.99999 0.1 749 1685 3135 6878
0.99999 0.05 2996 6739 12538 27510
0.99999 0.025 11983 26955 50150 110038
0.99999 0.01 74894 168469 313437 687736

Figure 2. Number of samples required by different conditions,
H = 32 steps. Red font indicates “impractical” number of samples
(see discussion on practicality in Section 2.3).

(F3: Significant Quality Milestones)
F3 :- n - o > [c] +/- [epsilon]
adaptivity :- firstChange
mode :- fp-free
([c] is large)

This condition is used for making sure that the repository
only contains significant quality milestones (e.g., log models
after 10 points of accuracy jump). Although the condition is
syntactically the same as F2, it makes sense for the whole
process to be hybrid adaptive and false-positive free.

(F4: No Significant Changes)
F4 :- d < [c] +/- [epsilon]
adaptivity :- full | none
mode :- fn-free
([c] is large)

This condition is used for safety concerns similar to F1.
When the machine learning application is end-user facing
or part of a larger application, it is important that its predic-
tion will not change significantly between two subsequent
versions. Here, the process needs to be false-negative free.
Meanwhile, we see use cases for both fully adaptive and
non-adative scenarios.

(F5: Compositional Conditions)
F5 :- F4 /\ F2

One of the most popular test conditions is a conjunction of
two conditions, F4 and F2: The integration team wants to
use F4 and F2 together so that the end-user facing applica-
tion will not experience dramatic quality change.

Practicality Analysis How practical is it for our baseline
implementation to support these conditions, and in which
case that the baseline implementation becomes impractical?

When is the Baseline Implementation Practical? The
baseline implementation, in spite of its simplicity, is practi-
cal in many cases. Figure 2 illustrates the number of samples
the system requires for H = 32 steps. We see that, for both
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F1 and F4, all adaptive strategies are practical up to 2.5
accuracy points, while for F2 and F3, the non-adaptive and
hybrid adaptive strategies are practical up to 2.5 accuracy
points and the fully adaptive strategy is only practical up to
5 accuracy points. As we see from this example, even with
a simple implementation, enforcing a rigorous guarantee
for CI of machine learning is not always expensive!

When is the Baseline Implementation Not Practical?
We can see from Figure 2 the strong dependency on ε. This
is expected because of the O(1/ε2) term in the Hoeffding
inequality. As a result, none of the adaptive strategy is
practical up to 1 accuracy point, a level of tolerance that
is important for many task-critical applications of machine
learning. It is also not surprising that the fully adaptive strat-
egy requires more samples than the non-adaptive one, and
therefore becomes impractical with higher error tolerance.

4 OPTIMIZATIONS
As we see from the previous sections, the baseline imple-
mentation of ease.ml/ci fails to provide a practical ap-
proach for low error tolerance and/or fully adaptive cases.
In this section, we describe optimizations that allow us to
further improve the sample size estimator.

High-level Intuition All of our proposed techniques in this
section are based on the same intuition: Tightening the sam-
ple size estimator in the worst case is hard to get better than
O(1/ε2); instead, we take the classic system way of think-
ing — improve the the sample size estimator for a sub-family
of popular test conditions. Accordingly, ease.ml/ci ap-
plies different optimization techniques for test conditions of
different forms.

Technical Observation 1 The intuition behind a tighter
sample size estimator relies on standard techniques of tight-
ening Hoeffding’s inequality for variables with small vari-
ance. Specifically, when the new model and the old model
is only different on up to (100 × p)% of the predictions,
which could be part of the test condition anyway, for data
point i, the random variable ni − oi has small variance:
E
[
(ni − oi)2

]
< p, where ni and oi are the predictions of

the new and old models on the data point i. This allows us
to apply the standard Bennett’s inequality.

Proposition 1 (Bennett’s inequality). Let X1, ..., Xn be
independent and square integrable random variables such
that for some nonnegative constant b, |Xi| ≤ b almost surely
for all i < n. We have

Pr

[∣∣∣∣∑iXi − E[Xi]

n

∣∣∣∣ > ε

]
≤ 2 exp

(
− v

b2
h

(
nbε

v

))
,

where v =
∑
i E
[
X2
i

]
and h(u) = (1 + u) ln(1 + u)− u

for all positive u.

Technical Observation 2 The second technical observation
is that, to estimate the difference of predictions between
the new model and the old model, one does not need to
have labels. Instead, a sample from the unlabeled dataset
is enough to estimate the difference. Moreover, to estimate
n− o when only 10% data points have different predictions,
one only needs to provide labels to 10% of the whole testset.

4.1 Pattern 1: Difference-based Optimization
The first pattern that ease.ml/ci searches in a formula
is whether it is of the following form

d < A +/- B /\ n - o > C +/- D

which constrains the amount of changes that a new model
is allowed to have while ensuring that the new model is
no worse than the old model. These two clauses popularly
appear in test conditions from our users: For production-
level systems, developers start from an already good enough,
deployed model, and spend most of their time fine-tuning
a machine learning model. As a result, the continuous inte-
gration test must have an error tolerance as low as a single
accuracy point. On the other hand, the new model will not be
different from the old model significantly, otherwise more
engaged debugging and investigations are almost inevitable.

Assumption. One assumption of this optimization is that it
is relatively cheap to obtain unlabeled data samples, whereas
it is expensive to provide labels. This is true in many of the
applications. When this assumption is valid, both optimiza-
tions in Section 4.1.1 and Section 4.1.2 can be applied to
this pattern; otherwise, both optimizations still apply but
will lead to improvement over only a subset.

4.1.1 Hierarchical Testing
The first optimization is to test the rest of the clauses con-
ditioned on d < A +/- B, which leads to an algorithm
with two-level tests. The first level tests whether the dif-
ference between the new model and the old model is small
enough, whereas the second level tests (n− o).

The algorithm runs in two steps:

1. (Filter) Get an (ε′, δ2 )-estimator d̂ with n′ samples.
Test whether d̂ > A+ ε′: If so, returns False;

2. (Test) Test F as in the baseline implementation (with
1− δ

2 probability), conditioned on d < A+ 2ε′.

It is not hard to see why the above algorithm works — the
first step only requires unlabeled data points and does not
need human intervention. In the second step, conditioned
on d < p, we know that E

[
(ni − oi)2

]
< p for each

data point. Combined with |ni − oi| < 1, applying Ben-
nett’s inequality we have Pr

[∣∣∣n̂− o− (n− o)
∣∣∣ > ε

]
≤

2 exp(−nph
(
ε
p

)
).
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As a result, the second step needs a sample size (for non-
adaptive scenario) of

n =
lnH − ln δ

4

ph
(
ε
p

) .

When p = 0.1, 1− δ = 0.9999, d < 0.1, we only need 29K
samples for 32 non-adaptive steps and 67K samples for 32
fully-adaptive steps to reach an error tolerance of a single
accuracy point — 10× fewer than the baseline (Figure 2).

4.1.2 Active Labeling
The previous example gives the user a way to conduct 32
fully-adaptive fine-tuning steps with only 67K samples. As-
sume that the developer performs one commit per day, this
means that we require 67K samples per month to support
the continuous integration service.

One potential challenge for this strategy is that all 67K sam-
ples need to be labeled before the continuous integration
service can start working. This is sometimes a strong as-
sumption that many users find problematic. In the ideal
case, we hope to interleave the development effort with the
labeling effort, and amortize the labeling effort over time.

The second technique our system uses relies on the observa-
tion that, to estimate (n−o), only the data points that have a
different prediction between the new and old models need to
be labeled. When we know that the new model predictions
are only different from the old model by 10%, we only need
to label 10% of all data points. It is easy to see that, every
time when the developer commits a new model, we only
need to provide

n =
− ln δ

4

ph
(
ε
p

) × p
labels. When p = 0.1 and 1− δ = 0.9999, then n = 2188
for an error tolerance of a single accuracy point. If the
developer commits one model per day, the labeling team
only needs to label 2,188 samples the next day. Given a
well designed interface that enables a labeling throughput
of 5 seconds per label, the labeling team only needs to
commit 3 hours a day! For a team with multiple engineers,
this overhead is often acceptable, considering the guarantee
provided by the system down to a single accuracy point.

Notice that active labeling assumes a stationary underlying
distribution. One way to enforce this in the system is to ask
the user to provide a pool of unlabeled data points at the
same time, and then only ask for labels when needed. In
this way, we do not need to draw new samples over time.

4.2 Pattern 2: Implicit Variance Bound
In many cases, the user does not provide an explicit con-
straint on the difference between a new model and an old
model. However, many machine learning models are not

so different in their predictions. Take AlexNet, ResNet,
GoogLeNet, AlexNet (Batch Normalized), and VGG for
example: When applied to the ImageNet testset, these five
models, developed by the ML community since 2012, only
produce up to 25% different answers for top-1 correctness
and 15% different answers for top-5 correctness! For a typ-
ical workload of continuous integration, it is therefore not
unreasonable to expect many of the consecutive commits
would have smaller difference than these ImageNet winners
involving years of development.

Motivated by this observation, ease.ml/ci will automat-
ically match with the following pattern

n - o > C +/- D.

When the unlabeled testset is cheap to get, the system will
use one testset to estimate d up to ε = 2D: For binary
classification task, the system can use an unlabeled testset;
for multi-class tasks, one can either test the difference of
predictions on an unlabeled testset or difference of correct-
ness on a labeled testset. This gives us an upper bound of
n− o. The system then tests n− o up to ε = D on another
testset (different from the one used to test d). When this
upper bound is small enough, the system will trigger similar
optimization as in Pattern 1. Note that the first testset
will be 16× smaller than testing n− o directly up to ε = D
— 4× due to a higher error tolerance, and 4× due to that d
has 2× smaller range than n− o.

One caveat of this approach is that the system does not know
how large the second testset would be before execution.
The system uses a technique similar to active labeling by
incrementally growing the labeled testset every time when
a new model is committed, if necessary. Specifically, we
optimize for test conditions following the pattern

n > A +/- B,

when A is large (e.g., 0.9 or 0.95). This can be done by first
having a coarse estimation of the lower bound of n, and then
conducting a finer-grained estimation conditioned on this
lower bound. Note that this can only introduce improvement
when the lower bound is large (e.g., 0.9).

4.3 Tight Numerical Bounds

Following (Langford, 2005), having a test condition con-
sisting of n i.i.d random variables drawn from a Bernoulli
distribution, one can simply derive a tight bound on the
number of samples required to reach a (ε, δ) accuracy. The
calculation of number of samples require the probability
mass function of the Binomial distribution (sum of i.i.d
Bernoulli variables). Tight bound are solved by taking the
minimum of number of samples n needed, over the max
unknown true mean p. This technique can also be extended
to more complex queries, where the binomial distribution
has to be replaced by a multimodal distribution. The exact
analysis has, as for the simple case, no closed-form solution,
and deriving efficient approximations is left as further work.
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Figure 3. Comparison of Sample Size Estimators in the Baseline
Implementation and the Optimized Implementation.

5 EXPERIMENTS

We focus on empirically validating the derived bounds and
show ease.ml/ci in action next.

5.1 Sample Size Estimator
One key technique most of our optimizations relied on is
that, by knowing an upper bound of the sample variance, we
are able to achieve a tighter bound than simply applying the
Hoeffding bound. This upper bound can either be achieved
by using unlabeled data points to estimate the difference
between the new and old models, or by using labeled data
points but conducting a coarse estimation first. We now
validate our theoretical bound and its impact on improving
the label complexity.

Figure 3 illustrates the estimated error and the empirical
error by assuming different upper bounds p, for a model with
accuracy around 98%. We run GoogLeNet (Jia et al., 2014)
on the infinite MNIST dataset (Bottou, 2016) and estimate
the true accuracy c. Assuming a non-adaptive scenario, we
obtain a range of accuracies achieved by randomly taking n
data points. We then estimate the interval ε with the given
number of samples n and probability 1−δ. We see that, both
the baseline implementation and ease.ml/ci dominate
the empirical error, as expected, while ease.ml/ci uses
significantly fewer samples.1

Figure 4 illustrates the impact of this upper bound on im-
proving the label complexity. We see that, the improvement
increases significantly when p is reasonably small — when
p = 0.1, we can achieve almost 10× improvement on the
label complexity. Active labeling further increases the im-
provement, as expected, by another 10×.

5.2 ease.ml/ci in Action
We showcase three different test conditions for a real-world
incremental development of machine learning models sub-
mitted to the SemEval-2019 Task 3 competition. The goal
is to classify the emotion of the user utterance as one of the

1The empirical error was determined by taking different testsets
(with the sample sample size) and measuring the gap between the
δ and 1− δ quantiles over the observed testing accuracies.

Figure 4. Impact of ε, δ, and p on the Label Complexity.

following classes: Happy, Sad, Angry or Others.2 The eight
models developed in an incremental fashion, and submitted
in that exact order to the competition (finally reaching rank
29/165) are made available together with a corresponding
description of each iteration via a public repository.3 The
test data, consisting of 5,509 items was published by the
organizers of the competition after its termination. This rep-
resents a non-adaptive scenario, where the developer does
not get any direct feedback whilst submitting new models.

Figure 5 illustrates three similar, but different test condi-
tions, which are implemented in ease.ml/ci. The first
two conditions check whether the new model is better than
the old one by at least 2 percentage points in a non-adaptive
matter. The developer will therefore not get any direct feed-
back as it was the case during the competition. While query
(I) does reject false positive, condition (II) does accept false
negative. The third condition mimics the scenario where
the user would get feedback after every commit without
any false negative. All three queries were optimized by
ease.ml/ci using Pattern 2 and exploiting the fact that
between any two submission there is no more than 10%
difference in prediction.

Simply using Hoeffding’s inequality does not lead to a prac-
tical solution — for ε = 0.02 and δ = 0.002, in H = 7
non-adaptive steps, one would need

n >
r2v(lnH − ln δ

2 )

2ε2
= 44, 268

samples. This number even grows to up to 58K in the fully
adaptive case!

2Competition website: https://www.humanizing-
ai.com/emocontext.html

3Github repository: https://github.com/zhaopku/
ds3-emoContext

https://www.humanizing-ai.com/emocontext.html
https://www.humanizing-ai.com/emocontext.html
https://github.com/zhaopku/ds3-emoContext
https://github.com/zhaopku/ds3-emoContext
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Iteration 1

- n – o > 0.02 +/- 0.02
- adaptivity: full
- reliability: 0.998
- mode: fp-free

(# Samples = 4713)

- n – o > 0.02 +/- 0.02
- adaptivity: full
- reliability: 0.998
- mode: fn-free

(# Samples = 4713)

- n – o > 0.018 +/- 0.022
- adaptivity: full
- reliability: 0.998
- mode: fp-free

(# Samples = 5204)

Non-Adaptive I Non-Adaptive II Adaptive
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it
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Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Figure 5. Continuous Integration Steps in ease.ml/ci.

All the queries can be supported rigorously with the 5.5K
test samples provided after the competition. The first two
conditions can be answered within two percentage point
error tolerance and 0.998 reliability. The full-adaptive query
in the third scenario can only achieve a 2.2 percentage point
error tolerance, as the number of labels needed would be
more than 6K, with the same error tolerance as in the first
two queries.

We see that, in all three scenarios, ease.ml/ci returns
pass/fail signals that make intuitive sense. If we look at
the evolution of the development and test accuracy over the
eight iterations (see Figure 6, the developer would ideally
want ease.ml/ci to accept her last commit, whereas all
three queries will have the second last model chosen to be
active, which correlates with the test accuracy evolution.

6 RELATED WORK
Continuous integration is a popular concept in software
engineering (Duvall et al., 2007). Nowadays, it is one of the
best practices that most, if not all, industrial development
efforts follow. The emerging requirement of a CI engine for
ML has been discussed informally in multiple blog posts
and forum discussions (Lara, 2017; Tran, 2017; Stojnic,
2018a; Lara, 2018; Stojnic, 2018b). However, none of these
discussions produce any rigorous solutions to testing the
quality of a machine learning model, which arguably is the
most important aspect of a CI engine for ML. This paper
is motivated by the success of CI in industry, and aims for
building the first prototype system for rigorous integration
of machine learning models.

The baseline implementation of ease.ml/ci builds on
intensive previous work on generalization and adaptive anal-
ysis. The non-adaptive version of the system is based on
simple concentration inequalities (Boucheron et al., 2013)
and the fully adaptive version of the system is inspired by
Ladder (Blum & Hardt, 2015). Comparing to the second,
ease.ml/ci is less restrictive on the feedback and more
expressive given the specification of the test conditions.
This leads to a higher number of test samples needed in
general. It is well-known that the O(1/ε2) sample com-

Figure 6. Evolution of Development and Test Accuracy.

plexity of Hoeffding’s inequality becomes O(1/ε) when the
variance of the random variable σ2 is of the same order
of ε (Boucheron et al., 2013). In this paper, we develop
techniques to adapt the same observation to a real-world
scenario (Pattern 1). The technique of only labeling the dif-
ference between models is inspired by disagreement-based
active learning (Hanneke et al., 2014), which illustrates the
potential of taking advantage of the overlapping structure
between models to decrease labeling complexity. In fact, the
technique we develop implies that one can achieve O(1/ε)
label complexity when the overlapping ratio between two
models p = O(

√
ε).

The key difference between ease.ml/ci and a differen-
tial privacy approach (Dwork et al., 2014) for answering
statistical queries lies in the optimization techniques we
design. By knowing the structure of the queries we are able
to considerably lower the number of samples needed.

Conceptually, this work is inspired by the seminal series of
work by Langford and others (Langford, 2005; Kääriäinen
& Langford, 2005) that illustrates the possibility for gen-
eralization bound to be practically tight. The goal of this
work is to build a practical system to guide the user in em-
ploying complicated statistical inequalities and techniques
to achieve practical label complexity.

7 CONCLUSION
We have presented ease.ml/ci, a continuous integra-
tion system for machine learning. It provides a declarative
scripting language that allows users to state a rich class of
test conditions with rigorous probabilistic guarantees. We
have also studied the novel practicality problem in terms of
labeling effort that is specific to testing machine learning
models. Our techniques can reduce the amount of required
testing samples by up to two orders of magnitude. We have
validated the soundness of our techniques, and showcased
their applications in real-world scenarios.
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A SYNTAX AND SEMANTICS

A.1 Syntax of a Condition

To specify the condition, which will be tested by
ease.ml/ci whenever a new model is committed, the
user makes use of the following grammar:

c :- floating point constant
v :- n | o | d
op1 :- + | -
op2 :- *
EXP :- v | v op1 EXP | EXP op2 c

cmp :- > | <
C :- EXP cmp c +/- c

F :- C | C /\ F

F is the final condition, which is a conjunction of a set of
clauses C. Each clause is a comparison between an expres-
sion over {n, o, d} and a constant, with an error tolerance
following the symbol +/-. For example, two expressions
that we focus on optimizing can be specified as follows:

n - o > 0.02 +/- 0.01 /\ d < 0.1 +/- 0.01

in which the first clause

n - o > 0.02 +/- 0.01

requires that the new model have an accuracy that is two
points higher than the old model, with an error tolerance of
one point, whereas the clause

d < 0.1 +/- 0.01

requires that the new model can only change 10% of the old
predictions, with an error tolerance of 1%.

A.2 Semantics of Continuous Integration Tests

Unlike traditional continuous integration, all three variables
used in ease.ml/ci, i.e., {n, o, d}, are random variables.
As a result, the evaluation of an ease.ml/ci condition
is inherently probabilistic. There are two additional param-
eters that the user needs to provide, which would define
the semantics of the test condition: (1) δ, the probability
with which the test process is allowed to be incorrect, which
is usually chosen to be smaller than 0.001 or 0.0001 (i.e.,
0.999 or 0.9999 success rate); and (2) mode chosen from
{fp-free, fn-free}, which specifies whether the test
is false-positive free or false-negative free. The semantics
are, with probability 1− δ, the output of ease.ml/ci is
free of false positives or false negatives.

The notion of false positives or false negatives is related to
the fundamental trade-off between the “type I” error and the
“type II” error in statistical hypothesis testing. Consider

x < 0.1 +/- 0.01.

Suppose that the real unknown value of x is x∗. Given an

estimator x̂, which, with probability 1− δ, satisfies

x̂ ∈ [x∗ − 0.01, x∗ + 0.01],

what should be the testing outcome of this condition? There
are three cases:

1. When x̂ > 0.11, the condition should return False
because, given x∗ < 0.1, the probability of having
x̂ > 0.11 > x∗ + 0.01 is less than δ.

2. When x̂ < 0.09, the condition should return True
because, given x∗ > 0.1, the probability of having
x̂ < 0.09 < x∗ − 0.01 is less than δ.

3. When 0.09 < x̂ < 0.11, the outcome cannot be deter-
mined: Even if x̂ > 0.1, there is no way to tell whether
the real value x∗ is larger or smaller than 0.1. In this
case, the condition evaluates to Unknown.

The parameter mode allows the system to deal with the case
that the condition evaluates to Unknown. In the fp-free
mode, ease.ml/ci treats Unknown as False (thus re-
jects the commit) to ensure that whenever the condition eval-
uates to True using x̂, the same condition is always True
for x∗. Similarly, in the fn-free mode, ease.ml/ci
treats Unknown as True (thus accepts the commit). The
false positive rate (resp. false negative rate) in the fn-free
(resp. fp-free) mode is specified by the error tolerance.


