
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

PRIORITY-BASED PARAMETER PROPAGATION
FOR

DISTRIBUTED DNN TRAINING

Anonymous Authors1

ABSTRACT
Data parallel training is widely used for scaling distributed deep neural network (DNN) training. However, the
performance benefits are often limited by the communication-heavy parameter synchronization step. In this paper,
we take advantage of the domain specific knowledge of DNN training and overlap parameter synchronization
with computation in order to improve the training performance. We make two key observations: (1) different
parameters can afford different synchronization delays and (2) the optimal data representation granularity
for the communication may differ from that used by the underlying DNN model implementation. Based on
these observations we propose a new mechanism called Priority-based Parameter Propagation (P3), which,
synchronizes parameters at a finer granularity and schedules data transmission in such a way that the training
process incurs minimal communication delay. We show that: P3 can improve the training throughput of ResNet-50,
Sockeye and VGG-19 by as much as 25%, 38% and 66% respectively.

1 INTRODUCTION

In recent years, deep learning has attracted tremendous at-
tention in the machine learning community and beyond by
achieving notable success across a wide spectrum of tasks
such as computer vision (He et al., 2015), machine trans-
lation (Wu et al., 2016) and speech recognition (Amodei
et al., 2015). Training these models, however, take days to
weeks or sometimes even months to finish because of the
high degree of computational complexity, large number of
parameters and large datasets iteratively processed (Silver
et al., 2017; Zhu et al., 2018). This high computation cost
necessitates distributed training to keep the training time
reasonable.

Data parallel distribution with synchronous stochastic gra-
dient descent (SGD) is a popular method for scaling DNN
training over a cluster of machines (Chen et al., 2016). In
this paradigm, worker machines iteratively train a shared
model on different samples of the input dataset, synchroniz-
ing by combining parameter updates on every iteration. A
training iteration involve three main steps: (1) a forward
propagation step for calculating the value of a loss on a
subset of input dataset function using up-to-date parameter
values, (2) a subsequent backward propagation step for com-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the Systems and Machine
Learning (SysML) Conference. Do not distribute.

puting the gradients for every model parameter with respect
to the loss calculated, and (3) a parameter synchronization
step for aggregating local gradients of all the worker ma-
chines and updating the parameters with the corresponding
aggregated gradient values using the SGD algorithm.

During distributed training, each worker machine gener-
ates and synchronizes hundreds of megabytes of gradient
values on every iteration (Alan et al., 2018). Handling
such huge volume of data require high network bandwidth.
This problem is exacerbated with the emergence of larger
DNN models and better hardware accelerators, because
worker machines can generate more data faster. This leads
to more frequent network synchronization often beyond
the capabilities of the networking infrastructure in major
cloud providers and most academic clusters (Luo et al.,
2018). These factors often make distributed DNN training a
communication-bounded workload. In this work, we target
this problem and propose solutions to scale data parallel
training under limited bandwidth conditions.

One way to handle a heavy communication load is to use
higher bandwidth networks. There are network solutions
like Ethernet (Cunningham et al., 1999) and InfiniBand
networks (Shanley, 2002) that can offer over 100Gbps band-
width capacity networking infrastructure for faster param-
eter synchronization. However, these technologies are yet
to be adopted widely because of the relatively high deploy-
ment cost. Moreover, faster networks for distributed DNN
training may not be sustainable solution considering the rate
of advancements in hardware accelerators and growth in the

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Priority-based Parameter Propagation for Distributed DNN Training

model complexity (Luo et al., 2018).

An alternative approach is to reduce the communication
volume by compressing gradient values (Wen et al., 2017;
Lin et al., 2018). Since gradient values are generally repre-
sented as floating point numbers, it is extremely challenging
to get reasonable compression ratios from lossless com-
pression techniques (Burtscher & Ratanaworabhan, 2009).
Instead, recent work in this area propose lossy compression
techniques like gradient quantization (Seide et al., 2014;
Alistarh et al., 2017; Wen et al., 2017) and sparse parameter
synchronization (Aji & Heafield, 2017; Lin et al., 2018).
These methods, however, risk affecting the final conver-
gence accuracy of the model because of the information loss
that comes with value approximation and stale parameter
updates (Khoram & Li, 2018).

An orthogonal approach is to utilize the network bandwidth
more efficiently by leveraging domain specific opportunities
in DNN training. Because of the iterative nature of deep
learning training algorithms, the traffic generated is usually
bursty. A common practice used in some distributed ma-
chine learning frameworks is to attenuate these traffic bursts
by overlapping communication with computation. The train-
ing computation is performed as a sequence of operations
called layers. During backward propagation each of these
operations generate gradients for a subset of parameters
of the whole model. Frameworks exploit this sequential
layer-by-layer structure in deep learning training algorithms
by scheduling independent gradient computation operations
and network communication operations together. Frame-
works trigger synchronization for a layer as soon as the
gradients for that layer is generated and is ready to be prop-
agated (Zhang et al., 2017). Using this approach, parameter
synchronization can be effectively overlapped with back-
ward propagation.

In this work, we find new opportunities to reduce the com-
munication bottleneck in distributed DNN training. Our
first observation is that domain specific knowledge of DNN
training allows us to schedule parameter synchronization
not only based on when the data is generated, but also based
on when the data is consumed. Training computation is a
sequence of stages, operating on one or a few layers of the
model at a time. During training, the gradients of the layers
are generated from final to initial layers and subsequently
consumed in the reverse order in the next iteration. Fig-
ure 1 shows a snapshot of the training process containing
the backward propagation of one iteration and the forward
propagation of the next one. The temporal gap between
gradients generated and consumed per layer are higher for
final layers compared to the initial ones. Scheduling pa-
rameter synchronization using this information can help to
overlap communication with both backward and forward
propagation.

L4 L3 L2 L1 L1 L2 L3 L4

Backward Propagation Forward Propagation

Nth
Iteration

(N+1)th
Iteration

Figure 1. Training iteration

Our second observation is that the layer-wise granularity
used by the underlying neural network implementation may
not always be optimal for parameter synchronization. In
our experiments, we observe that for certain models (e.g.,
VGG-19, Sockeye), parameter synchronization at finer gran-
ularity can improve the network utilization and reduce the
communication delay.

Based on these observations we propose a new synchroniza-
tion method called Priority-based Parameter Propagation
(P3).

1.1 Our Approach: Priority-based Parameter
Propagation (P3)

There are two main ideas behind P3: (1) During parameter
synchronization, P3 splits the gradients of the layers into
smaller slices and synchronize them independently. (2) P3
synchronizes the parameter slices based on their priority,
where priority of a parameter is defined by how soon it is
going to be consumed in the subsequent iteration. During
back propagation, P3 always allocates network cycles to
the highest priority parameters in the queue, preempting
synchronization of a previous low priority parameter slice if
necessary.

P3 offers following advantages over state-of-the-art mecha-
nisms. (1) P3 can provide improved training performance
under limited bandwidth conditions by better overlapping
communication with computation and utilizing the avail-
able network bandwidth more efficiently. (2) P3 is model-
agnostic and the implementation only requires minimal ef-
fort and is localized within the framework. (3) P3 always
communicates full gradients and does not affect model con-
vergence.

In summary, this paper makes the following contributions:

• We show that parameter synchronization at layer-wise
granularity can cause suboptimal resource utilization in
some models (e.g., VGG-19, Sockeye). We also show
that the parameter synchronization can be scheduled
better to efficiently use the available network band-
width by taking into account not only the information

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Priority-based Parameter Propagation for Distributed DNN Training

on when the gradients are generated, but also when
they are consumed.

• We present a new parameter synchronization mech-
anism, called Priority-based Parameter Propagation
(P3), which takes advantage of the temporal gap in
the generation and consumption of gradients of differ-
ent layers and propagates the gradients based on their
priorities, with initial layers getting higher priority.
We demonstrate that P3 has better resiliency towards
bandwidth limitations compared to other parameter
synchronization mechanisms.

• We implement P31 on MXNet (Chen et al., 2015), a
popular distributed machine learning framework, and
evaluated the performance against standard MXNet
implementation as the main baseline. With P3 , we
improve training performance of several state-of-the-
art models like ResNet-50 (He et al., 2015), Sockeye
(Hieber et al., 2017) and VGG-19 by as much as 25%,
38% and 66% correspondingly when available network
bandwidth is limited.

2 BACKGROUND

L1

L2 L3
L4

Input layer

Output layer
Hidden layers

x

W1

W2 W3

Figure 2. Deep neural network structure

As illustrated in Figure 2, a DNN consists of a hierarchy of
parameters arranged as a sequence of layers ranging from as
few as 5-10 (Krizhevsky et al., 2012) to as many as 100s (He
et al., 2015). Each layer takes an input vector x and emits an
output vector based on a transformation function f(W,x),
where W is the parameter matrix of the layer. In Figure
2, the initial input layer of the DNN takes the application
specific data samples as input and the final output layer
produces the value of the DNN’s objective function after
applying a series of transformation operations defined by
the layers on the input vector. The output is generally a
scalar value representing the error in the prediction (loss).

DNN training is an iterative process for optimizing the objec-
tive function defined by the neural network. During training,
DNN runs a series of operations on the input vectors sam-

1We will be open-sourcing P3 implementation soon.

pled from the dataset and calculates the loss associated with
the model parameters on the input data. This is called a
forward propagation. After that, a backward propagation
step is performed that calculates the error contribution of
each parameter by computing gradients of all the layers with
respect to the loss. The backward propagation method for
calculating gradients is based on the chain rule of derivatives
and is therefore performed in the reverse order of forward
propagation i.e., gradients of the final layers are calculated
first and moves backwards to the initial layers, hence the
name backward propagation (Rumelhart et al., 1986). Once
the gradients are calculated, the parameters are updated us-
ing an optimization algorithm, usually Stochastic Gradient
Descent (SGD) (Bottou, 2010). This process (forward prop-
agation, backward propagation, and parameter update) is
repeated by randomly sampling input from a sufficiently
large dataset until the model converges to an acceptable
optima.

The training process takes many (e.g., thousands) iterations
to converge and is therefore highly computationally expen-
sive. The total training time can be dramatically reduced by
distributing the workload into multiple machines by taking
advantage of the data parallel nature of the SGD algorithm.
Data parallel training (Keuper & Preundt, 2016) involves
multiple workers simultaneously working on a shared pa-
rameter set with the whole dataset distributed equally among
them. Workers calculate gradients on same parameter val-
ues but on different input data samples and aggregate these
gradients in a synchronous fashion before performing pa-
rameter updates. This mechanism is called a synchronous
SGD algorithm (Chen et al., 2016).

There are many methods used in practice for synchronous
parameter update. The parameter server architecture (Li
et al., 2014) is one of the most popular methods among them.
A parameter server is a distributed shared memory system
that keeps track of the up-to-date values of all the model pa-
rameters. Before every iteration, each worker machine reads
the latest parameter values (θ) from the parameter server
and locally computes gradients for the inputs sampled from
its data shard. The workers then send the local gradients (O)
to the parameter server. The parameter server waits until it
receives gradient updates from all worker machines, then ag-
gregates the gradients together and updates the parameters
for the next iteration.

Figure 3 shows parameter server-based data parallel training
in a four-node cluster. The communication between worker
machine and parameter server is usually over a network and
often becomes the bottleneck in achieving linear scalability
in data parallel training (Zhu et al., 2018; Shi & Chu, 2017).

Popular machine learning frameworks, e.g., MXNet (Chen
et al., 2015) and TensorFlow (Abadi et al., 2016) can be
distributed over a cluster of machines using the parameter

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Priority-based Parameter Propagation for Distributed DNN Training

PS

Worker
1

Worker
2

Worker
3

Worker
4

θ
∇3

θ
θ

∇1

∇2

∇4

θ

Data 1 Data 2

Data 3 Data 4

Figure 3. Parameter server architecture

server architecture. MXNet is designed specifically for mak-
ing data parallel training efficient and easy to execute. It
comes with a built-in implementation of parameter server
called KVStore. In MXNet, worker machines send out gra-
dients of a layer to the KVStore as soon as they are cal-
culated and issues a parameter pull request once all the
other workers have finished sending gradient updates for
that layer. This aggressive parameter synchronization mech-
anism makes data parallel training on MXNet very efficient.

TensorFlow, on the other hand, is designed as a more generic
machine learning framework. Hence it does not have an
explicit parameter server implementation. However, a pa-
rameter server can be implemented on top of the graph
computation framework provided by TensorFlow. Since
the parameter server is a part of the computation graph, the
communication between the worker subgraph and parameter
server subgraph is handled by the framework itself. Ten-
sorFlow automatically places Send and Receive operations
on the edges of the computation graph that crosses the de-
vice boundaries. Similar to MXNet, the worker subgraph
executes the send operation as soon as the gradients are com-
puted. However, since every training iteration is a separate
graph execution, the parameter pull request is not issued
until start of the next iteration. This disconnection in send-
ing gradients and receiving parameter updates could cause
underutilization of bidirectional bandwidth of the network.

Despite small differences such as described above, we ob-
serve that machine learning frameworks (MXNet, Tensor-
Flow, Caffe2, etc.) follow two common behaviors. For
performance reasons, the operations in the DNN implemen-
tation usually prefer to perform computations on large data
representations and because of this, the gradients for all the
parameters in a layer is usually generated in a single shot.
We observe that (1) because the gradients are generated
in a layer level granularity, frameworks perform parameter
synchronization at the same granularity as well. Moreover,
since the DNN implementation is written as a dependency
graph in these frameworks, (2) the gradients of the layers
are sent out to the parameter server over the network as soon
as the backward propagation of that layer has completed. In
this work, we address the limitation associated with these
two observations.

Apart from parameter server architecture, there are other

mechanisms used for gradient aggregation. For example,
there are many variations of MPI all reduce operation specif-
ically designed for machine learning workloads (Daily et al.,
2018; Awan et al., 2017). In this work, we implement P3
over the parameter server architecture in MXNet. However,
P3 design principles, namely parameter slicing and priority-
based propagation, are general enough to be applied to any
gradient aggregation methods.

3 LIMITATIONS OF PARAMETER
SYNCHRONIZATION

Current parameter synchronization mechanisms have major
limitations in effectively utilizing available network band-
width due to two main reasons. The first one comes with the
aggressive synchronization performed by the frameworks
where the gradients of the layers are sent to the parameter
server immediately after finishing the backward propagation
of that layer. Since the backward propagation progresses
from the final to the initial layer, the gradients are also
generated and propagated in that order. However, the next
forward propagation can only be started after receiving the
parameter updates for the first layer. We observe that un-
der limited bandwidth, gradient propagation of the final
layers can induce queuing delays on the initial layers and
subsequently delay the next iteration. This prevents the
communication from being efficiently overlapped with the
forward propagation.

L3 L2 L1 L1 L2 L3

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Backward
propagation

Forward
propagation

 Delay

Computation Parameter Synchronization

(a) Aggressive synchronization

L3 L2 L1 L1 L2 L3

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Backward
propagation

Forward
propagation

 Delay

Computation Parameter Synchronization

(b) Priority based synchronization
Figure 4. Parameter synchronization

Figure 4(a) shows parameter synchronization of a 3-layered
4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Priority-based Parameter Propagation for Distributed DNN Training

DNN. In this example, the forward and backward propaga-
tion of each layer takes 1 time unit and parameter synchro-
nization takes 2 time units. Since the parameters of the lay-
ers are aggressively synchronized, the total delay between
the two iterations is twice the time taken for synchronizing
the first layer. Moreover, since the order of parameter up-
dates are always maintained throughout the training, during
forward propagation the network stays completely idle.

This effect becomes more dominant when the communi-
cation time required for individual layers vary due to the
presence of dense layers in the DNN, as the synchronization
time need for dense layers are relatively higher. Figure 5
shows the parameter distribution of three popular image clas-
sification models: ResNet-50, InceptionV3, VGG-19 and a
machine translation model Sockeye. The skewed parameter
size distribution is a general trend in image classification
models where the final fully connected layers are usually
heavier and can potentially induce higher queuing delay on
to the lighter initial convolution layers.

The second limitation is due to the parameter synchroniza-
tion being performed at a full layer-wise granularity. The
communication cost of parameter synchronization consists
of three major components: (1) gradient propagation time
for the worker machine in order to send the gradients to the
parameter server, (2) time taken by the parameter server
to aggregate the gradients and perform parameter update,
and (3) parameter propagation time taken by the parameter
server to send the updated parameters back to worker ma-
chine(s). As we described in Section 2, current distributed
machine learning frameworks overlap gradient propagation
of one layer with the backward propagation of the next one.
On top of this, at parameter server side, the gradient propaga-
tion of a layer is overlapped with the parameter update of the
previous layer. This type of communication-computation
pipelining is effective only if the size of the layers are more
or less uniform. Unfortunately, this is usually not the case.
For example, Figure 5(c) shows that VGG-19 contains a
single fully connected layer which has 71.5% of all the
parameters in the entire network. We observe that the dis-
proportionately heavy layers like this could severely affect
the effective utilization of network bidirectional bandwidth.

This effect is explained in Figure 6(a) using the previous
example of parameter synchronization of a 3-layered DNN.
In this case, gradient propagation, parameter update and
parameter propagation of the second layer take thrice as
much time as that of the first and third layers. Because
of this imbalance, the communication delay in this model
is mainly dominated by the second layer. The parameter
synchronization of the first and the third layer can only
be partially overlapped with the second layer. As seen
in the example, this severely underutilizes the computing
resources and bidirectional bandwidth by spending the last

3 time steps just for receiving parameter updates from the
parameter server.

From the above observations we draw two major conclu-
sions. (1) Application domain-specific knowledge of DNNs
can be utilized to schedule communication not only based
on when the data is generated in the backward propagation,
but also based on when the data is going to be consumed in
the subsequent forward propagation. Scheduling parame-
ter synchronization based on this information and sending
gradients conservatively could reduce the delay by better
overlapping communication with computation. (2) The op-
timal granularity required for parameter synchronization
may differ from the one used for data representation by the
underlying model implementation. Synchronizing param-
eters at a finer granularity can better utilize the available
computing and networking resources.

4 P3: DESIGN AND IMPLEMENTATION

Based on the above observations, we propose a new method
for parameter synchronization called P3. As explained in
Section 1.1, P3 has two core components: (1) parameter
slicing, and (2) priority-based update.

P3 synchronizes parameters at a finer granularity by slicing
the gradient matrix of the individual layers in the DNN
into smaller pieces and synchronizing them independently.
By doing so, we observe that the network utilization can
be improved. In Figure 6(b), splitting the second layer
into 3 smaller packets and independently synchronizing
them achieves better overlap between data transmission and
parameter update. Since the synchronization of all the slices
are perfectly pipelined, the network stays busy most of the
time. The bidirectional bandwidth is completely utilized
during the synchronization of all the intermediate slices.
This considerably reduces the communication cost in these
types of DNNs. In this example, with parameter slicing the
communication cost has reduced by 30%.

After splitting the layers into smaller pieces, we assign pri-
orities to each slice. These slices inherit their priority values
from its parent layer. Priorities of the layers are assigned
based on the order in which they are processed in the for-
ward propagation. The first layer gets the highest priority
and the priority decreases moving towards the end, with
last layer getting the lowest priority. During the parameter
synchronization, gradient slices are transmitted based on
their priority as shown in Figure 4(b). In this example, with
prioritization enabled, the delay between two iterations has
reduced by half and the communication is evenly overlapped
with both forward and backward propagation.

We implemented P3 by modifying MXNet parameter server
module called KVStore. Below, we explain how the baseline
KVStore works and then the modifications we made for P3.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Priority-based Parameter Propagation for Distributed DNN Training

(a) ResNet-50 (b) InceptionV3 (c) VGG-19 (d) Sockeye

Figure 5. Parameter distribution

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Receive Parameters Parameter Update Send Gradients

(a) Layer level granularity

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2.1

L1

L2.2

L2.3

Receive Parameters Parameter Update Send Gradients

(b) Fine granularity

Figure 6. Coarse and fine granularity

4.1 KVStore: Baseline system

KVStore is a wrapper implemented on top of the light-
weight parameter server ps-lite (Li et al., 2014). KVStore
has two components: KVWorker which runs locally to the
worker machine as part of the training process and a separate
server process called KVServer. KVWorker is responsible
for sending gradients and receiving parameter updates from
KVServer. KVServer is responsible for receiving gradients
from KVWorkers, aggregating them and updating the pa-
rameters while ensuring data consistency. KVServer stores
the parameters at layer level as a key-value pair, where key
is the index of a layer and value is an array of floating points
each corresponding to the parameter values of that layer.
For load balancing purposes, more than one KVServers
can be used for the training with the parameters equally
sharded between them. For better resource utilization, a
common practice is to run a KVServer on every machine
with a worker process.

Before starting the training process, KVStore initializes
and distributes the parameters of all the layers among the

KVServers. KVStore follows a simple heuristic for fair
distribution of parameters. Layers with size smaller than a
fixed threshold are assigned to a randomly chosen KVServer.
Parameters of larger layers are split equally among the
KVServers. This is different from parameter slicing used
in P3 (explained in Section 4.2). The threshold is a config-
urable parameter and is set to 106 parameters by default.

KVServer exposes two main interfaces to each KVWorker
for sending gradients and requesting updated parameters:
a Push request and Pull request. During training, MXNet
issues a parameter synchronization request for a layer to
the KVServer through the KVWorker as soon as the back
propagation of that layer has finished. KVWorker serializes
(and fragments in case of large layers) the gradient matrix
and issues a Push request to the corresponding KVServer(s).
KVServer keeps a counter for the number of updates re-
ceived on a key-value pair for maintaining data consistency.
KVServer aggregates gradients until it has received updates
from all the workers. Once all the gradient updates have
been received, KVServer updates the parameters using the
aggregated gradient values.

Once the parameters are updated KVServer notifies all the
workers and resets the counter for that key-value pair. When
KVWorker receives a notification, it immediately issues a
Pull request to the KVServer(s) for the corresponding up-
dated parameter values. KVServer then sends the latest
parameter values in response and KVWorker (reconstructs
for large layers) updates the local parameter values for the
next iteration. MXNet overlaps the parameter synchroniza-
tion of the layers by asynchronously issuing Push requests
for the layers whose gradients are ready to be propagated.

4.2 P3: Implementation

In order to implement P3, we modify KVWorker and
KVServer into P3Worker and P3Server. On the worker
side, when a parameter synchronization is issued, P3Worker
splits the gradient matrix of the layer based on a prede-
fined size threshold (choice of this threshold is explained
in Section 5.6). Unlike KVStore, this threshold defines the
maximum granularity with which layers are split. This is the
parameter slicing part in P3. For load balancing purposes,
each of these slices are assigned to a P3Server in a round
robin fashion.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Priority-based Parameter Propagation for Distributed DNN Training

The priority-based gradient propagation is implemented
using a producer-consumer mechanism communicating
through a priority queue. After parameter slicing, the pro-
ducer part of P3Worker assigns priorities to the individual
slices and pushes slices onto the priority queue all at once.
A separate consumer thread in the P3Worker continuously
polls the highest priority slice from the queue and sends
the slice to the P3Server through the network with its pri-
ority stamped on the packet header. The consumer thread
uses blocking network calls, so the rate at which the prior-
ity queue is polled is automatically adjusted based on the
networking delays of the data transmission. This simple
producer-consumer model makes sure that the network does
not experience bursty traffic flow from the P3Worker at
the same time the backward propagation is not hindered
at the worker side. Also the slice with the highest priority
in the priority queue always gets the first preference for
transmission.

We also add a producer-consumer mechanism at the receiv-
ing end of the P3Server in order to deal with in-network de-
lays. The packets received at the P3Server are pushed onto a
priority queue with the priority assigned by the P3Worker as
the key. A server consumer thread then polls from this queue
and processes the packet the same way as in a KVServer.
Prioritization at the P3Server ensures highest priority pa-
rameters are processed first.

Apart from these modifications, we remove the explicit
update notification and pull requests from the KVServer.
P3Server immediately broadcasts the updated parameters
to all workers once it has received all of the updates. Since
workers always issue a pull request after every push, this
change does not affect the correctness of the training algo-
rithm. This modification was necessary because MXNet
only issues a pull request once it has received the update
notification for all the slices of a layer. Eliminating this
helped to improve the bidirectional bandwidth utilization.
Since individual slices are synchronized independent to each
other, sending gradients for a slice can be overlapped with
the parameter updates received by another.

5 EVALUATION

5.1 Methodology

We have evaluated the P3 implementation on three image
classification models: ResNet-50 (He et al., 2015), Incep-
tionV3 (Szegedy et al., 2015), VGG-19 (Simonyan & Zisser-
man, 2014) and on an LSTM-based model, Sockeye (Hieber
et al., 2017). In all performance evaluation experiments
we chose the standard MXNet KVStore implementation
described in Section 4.1 as the baseline. Since P3 imple-
mentation does not interfere with the model implementation
or the training algorithm, the model convergence is not af-

fected in any way. This means the baseline and P3 would
follow the same training curve for a given hyper parame-
ter set. Under this condition, the improvement in training
performance is completely determined by the rate at which
input data is processed. Therefore the primary performance
comparison metric we use is the training throughput, which
is the number of total training samples processed by the
worker machines in one second. The throughput measure-
ments are taken after training the models for a few iterations
until the throughput has become stable and averaged over
1000 iterations. In all the experiments we set the number
of KVServers/P3Servers equal to the number of worker
machines.

We conduct performance evaluation of P3 in three different
experiments. Section 5.2 shows how resilient P3 is towards
bandwidth limitations in the network. We perform this ex-
periment by training the model on a four machine cluster
each equipped with one Nvidia P4000 GPU (NVIDIA Cor-
poration) and interconnected with a 100Gbps InfiniBand
network (Shanley, 2002). We measure throughput variation
while artificially limiting the network interface transmis-
sion rate using Linux’s tc qdisc utility. Section 5.3 shows
how well P3 utilizes the available bandwidth and reduces
the network idle time. The network utilization is measured
per interface level using Linux’s bwm-ng tool at a 10 mil-
lisecond granularity. Finally, in Section 5.4 we test the
scalability of P3 on different cluster sizes. This experiment
is conducted on AWS using g3.4xlarge machine instances
on a 10Gbps network.

In Section 5.5, we compare the convergence accuracy for
models trained using P3 and compression based techniques.
For this comparison study, we picked the state-of-the-art
compression technique Deep Gradient Compression (DGC)
(Lin et al., 2018). We implemented DGC on top of the
baseline MXNet based on the details provided in the original
paper and the information collected from the authors. In
addition to these experiments, we have also evaluated the
effects of different parameter slice sizes on the training
throughput in Section 5.6.

5.2 Bandwidth v.s. throughput

In this experiment, we analyze how much improvement P3
can provide on throughput compared to the baseline im-
plementation when the network bandwidth is not sufficient
enough for training. We measure the training throughput of
ResNet-50, InceptionV3, VGG-19 and Sockeye on a tightly
controlled four-machine cluster by setting different trans-
mission rates on the network interface on all the machines.
Figure 7 compares the throughput from P3 with the baseline
system for different network bandwidths. We also mea-
sured the performance benefits achieved from only using
the parameter slicing optimization.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Priority-based Parameter Propagation for Distributed DNN Training

(a) ResNet-50 (b) InceptionV3 (c) VGG-19 (d) Sockeye

Figure 7. Bandwidth v.s. Throughput

In Figure 7(a) and 7(b), both baseline and P3 give simi-
lar training performance when the network bandwidth is
sufficient enough for scaling these models on 4 machines.
However, the baseline throughput starts to drop in ResNet-
50 below 6Gbps. At the same time, P3 maintains the linear
throughput until the bandwidth drops below 4Gbps. This
is because P3 reduces the peak bandwidth required for the
model by efficiently overlapping communication with the
computation. At 4Gbps, P3 provides 26% more throughput
than the baseline. For InceptionV3, the maximum speed up
obtained is 18%. It is interesting to note that these models
does not benefit from parameter slicing, as the layer sizes
are relatively small in these DNNs (Figure 5(a) and 5(b)).

Figure 7(c) and 7(d) shows the throughput of VGG-19 and
Sockeye. These models contain one or two very large lay-
ers (Figure 5(c) and 5(c)), and because of the presence of
these large layers, the parameter slicing optimization alone
is giving considerable improvement in performance. At
30Gbps, parameter slicing can provide 49% speedup on
VGG-19. The speedup is further improved with P3 by as
much as 66% at 15Gbps. Sockeye is a special case among
other models. Unlike image classification models, the heav-
iest layer in this model is the initial layer. In Figure 7(d),
Sockeye performance has improved by a maximum of 38%
with P3. We observe that P3 always performs better than
the baseline with higher performance benefits under limited
bandwidth conditions. Performance benefits of P3 diminish
when the network bandwidth is lower. This is because the
communication time is significantly higher and there is little
room for improvement by overlapping communication with
computation.

5.3 Network utilization

This experiment compares the network utilization of P3 with
the baseline system. We conduct this experiment for ResNet-
50, VGG-19 and Sockeye and measure the traffic generated
and received by one of the four worker machines. Figure 8
shows the network utilization of baseline system. The base-
line implementation has bursty network traffic generated
with regular peaks and crests across all models. This pat-
tern is observed in TensorFlow as well. Figure 8(b) shows
the network utilization of ResNet-50 on TensorFlow over
4Gbps network. Similar to MXNet, TensorFlow also under-

utilizes the available network bandwidth. For the Sockeye
model, the network idle time of ResNet-50 and VGG-19 is
extremely dominant because of the heavy initial layer. More-
over, the inbound and outbound traffics are not overlapped
as the baseline fails to fully utilize bidirectional bandwidth.

Figure 9 shows the network utilization graph with P3. We
observe that P3 improves the network utilization compared
to baseline. In Figure 9(a) and 9(b), the network idle time
has been considerably lowered with P3. Especially for
Sockeye in Figure 9(c), P3 utilizes bidirectional bandwidth
more effectively than baseline system . This is one of the
key reasons for the speedup observed for Sockeye model
despite having a heavy initial layer.

5.4 Scalability

We perform scalability analysis on ResNet-50, VGG-19 and
Sockeye in order to show how well P3 can perform on large
clusters compared to the baseline system. We conducted this
experiment by distributing models on clusters of different
sizes (2, 4, 8 and 16) over a 10Gbps network. Figure 10(a)
shows, for ResNet-50 both the baseline and P3 perform
similarly. As shown in Section 5.2, 10Gbps network is more
than enough for linearly scaling ResNet-50. The throughput
of VGG-19 has been considerably improved with P3 by as
much as 61% on an eight machine cluster (Figure 10(b)).

Figure 10(c) shows the scalability of Sockeye. LSTM-based
models are very hard to scale over multiple machines, be-
cause of the heavy initial layers and difference in iteration
time in worker machines due to the variable sequence length
of input data. With P3, we improve Sockeye throughput by
as much as 18% on eight-machine cluster.

5.5 Training accuracy

As described in the Section 1, there are many compression
techniques proposed for improving data parallel training per-
formance. These methods can provide higher performance
gains compared to P3 , however, at the cost of loss in the
final convergence accuracy. In this section, we compare
convergence accuracy of P3 with the state-of-the-art com-
pression technique Deep Gradient Compression (DGC) (Lin
et al., 2018).

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Priority-based Parameter Propagation for Distributed DNN Training

(a) ResNet-50 at 4Gbps (b) ResNet-50 at 4Gbps on Ten-
sorFlow

(c) VGG-19 at 15Gbps (d) Sockeye at 4Gbps

Figure 8. Network utilization of the baseline system

(a) ResNet-50 at 4Gbps (b) VGG-19 at 15Gbps (c) Sockeye at 4Gbps

Figure 9. Network utilization of P3

(a) ResNet-50 (b) VGG-19 (c) Sockeye

Figure 10. Throughput scaling with different number of machines

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 100 110 120 130 140 150 160

V
a
li
d
a
ti

o
n
 A

c
c
u
ra

c
y

Epoch

P3
DGC

Figure 11. P3 v.s. DGC

We trained ResNet-110 on the CIFAR-10 dataset over a 4
machine cluster with both P3 and DGC using 5 different
hyper parameter settings for 160 epochs. Figure 11 shows
the validation accuracy range of P3 and DGC from these
experiments. The dark bands represent the gap between the
worst and best accuracy on the 5 hyper parameter setting.
We observe that the final accuracy obtained with P3 is al-
ways better than DGC. We calculate an average accuracy
drop of 0.004 with DGC.

Unlike compression based mechanisms like DGC, P3 al-

ways communicate the full gradients with other worker ma-
chines and does not make any modification in the original
SGD algorithm. Because of this the performance benefits
from P3 comes without any penalty on model accuracy.

5.6 Parameter slice size selection

As we showed in Section 4, a small gradient packet size can
improve the network utilization and, in turn, can improve
overall training throughput. In this section, we show how
the size of the parameter slice affects training performance.
Figure 12 shows the throughput obtained for ResNet-50 and
VGG-19 with P3 on different parameter slice sizes.

Initially, throughput increases as size decreases, and reaches
a peak at 50, 000 and then it start dropping. This happens be-
cause if the size is made too small, the overhead of synchro-
nizing packets at very small granularity is higher and dwarfs
the benefits of parameter slicing. In all our experiments,
we used a maximum granularity of 50, 000 parameters per
slice.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Priority-based Parameter Propagation for Distributed DNN Training

(a) ResNet-50 (b) VGG-19 (c) Sockeye

Figure 12. Granularity v.s. Throughput

6 RELATED WORK

In this paper, we describe the key limitations in the data
parallel deep learning distribution techniques used in pop-
ular machine learning frameworks (e.g., TensorFlow and
MXNet), and propose solutions to mitigate these limitations
by taking advantage of domain specific characteristics of
deep learning models. To the best of our knowledge, this is
the first work to summarize and address these issues.

One notable prior work which proposes domain specific
optimizations for data parallel deep learning workloads is
Poseidon (Zhang et al., 2017). This work introduced the
idea of wait-free-back-propagation (WFBP) which hides
the communication overhead behind back propagation by
independently synchronizing individual layers in the neural
network. In our work, we built upon this idea, and show
that we can overlap computation with both forward and
backward propagation. We further improve this idea by
using parameter slicing that utilizes network bandwidth
better.

Most recent work in this area tries to reduce communica-
tion overhead by sending fewer gradients. One popular
method to reduce data transmission is gradient quantization
(representing the gradient values using fewer bits). For ex-
ample, 1-bit SGD (Seide et al., 2014) represents a 32-bit
floating point gradient value in a single bit. In order to
account for the information loss that comes with the value
approximation, 1-bit SGD also add an error feedback in the
SGD algorithm. 1-bit SGD can provide up to 10× speed
up. QSGD (Alistarh et al., 2017) and TernGrad (Wen et al.,
2017) use similar methods but also provide mathematical
guarantees on convergence.

Another approach is sparse parameter synchronization. The
idea is to synchronize only a few parameters on every itera-
tion instead of the whole model. Gradient dropping method
only synchronizes parameters which have gradient values
more than a threshold. The threshold is calculated based on
a fixed compression ratio (Aji & Heafield, 2017). AdaComp
(Chen et al., 2017) automatically tunes the compression ra-
tio depending on the local gradient activity and achieves up
to 200× compression.

All the above techniques make trade offs between training
performance and model accuracy because of the information
loss introduced by value approximation or stale parameter
updates (Khoram & Li, 2018). P3 on the other hand, does
not introduce any information loss since it always sends full
gradient matrix on every iteration.

Recent work, called Deep Gradient Compression(DGC)
(Lin et al., 2018), offers up to 600× compression and around
5× speedup in low bandwidth networks while maintaining
the same baseline accuracy on several DNN models. DGC
use local gradient accumulation and momentum correction
techniques to maintain the same accuracy. Even though
the authors report no accuracy loss with DGC, there is no
formal proof on the convergence guarantees cited in the
paper. And as shown in Section 5.5, we find it difficult
to reproduce their results despite substantial effort2. In
our experiments, P3 always gives better accuracy than the
DGC. We conclude that our mechanism is a safer approach,
as P3 does not introduce information loss in the training
algorithm and therefore there is no potential risk of accuracy
loss. Moreover, our proposal is an orthogonal approach
to the compression techniques and can be used on top of
compression mechanisms to further improve performance.

7 CONCLUSION

In this paper, we analyze the data parallel distributed training
methods used in current machine learning frameworks and
observe that they fail to fully utilize available network band-
width and induces high penalty on training performance
under bandwidth limitations. Based on this observation we
propose a new parameter synchronization method called P3
which improves the training performance by better utiliz-
ing the available network bandwidth. We implemented P3
over MXNet and demonstrate it to have higher resiliency
towards bandwidth constraints and better scalability than the
baseline MXNet implementation. With P3, we improved
training throughput of ResNet-50 by as much as 25%, Sock-
eye 38% and VGG-19 66%.

2This includes personal communication with the authors in
order to get all their experiments correctly.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Priority-based Parameter Propagation for Distributed DNN Training

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 265–283,
Savannah, GA, 2016. USENIX Association. ISBN 978-
1-931971-33-1. URL https://www.usenix.org/
conference/osdi16/technical-sessions/
presentation/abadi.

Aji, A. F. and Heafield, K. Sparse communication for dis-
tributed gradient descent. CoRR, abs/1704.05021, 2017.
URL http://arxiv.org/abs/1704.05021.

Alan, M., Panda, A., Bottini, D., Jian, L., Kumar, P.,
and Shenker, S. Network evolution for dnns. SysML,
doc/182, 2018. URL http://www.sysml.cc/doc/
182.pdf.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. In Guyon, I., Luxburg, U. V., Ben-
gio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 30, pp. 1709–1720. Curran Associates,
Inc., 2017.

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper,
J., Catanzaro, B., Chen, J., Chrzanowski, M., Coates, A.,
Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner, C.,
Han, T., Hannun, A. Y., Jun, B., LeGresley, P., Lin, L.,
Narang, S., Ng, A. Y., Ozair, S., Prenger, R., Raiman,
J., Satheesh, S., Seetapun, D., Sengupta, S., Wang, Y.,
Wang, Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J., and
Zhu, Z. Deep speech 2: End-to-end speech recognition
in english and mandarin. CoRR, abs/1512.02595, 2015.
URL http://arxiv.org/abs/1512.02595.

Awan, A. A., Chu, C., Subramoni, H., and Panda, D. K.
Optimized broadcast for deep learning workloads on
dense-gpu infiniband clusters: MPI or nccl? CoRR,
abs/1707.09414, 2017. URL http://arxiv.org/
abs/1707.09414.

Bottou, L. Large-scale machine learning with stochastic
gradient descent. In in COMPSTAT, 2010.

Burtscher, M. and Ratanaworabhan, P. Fpc: A high-
speed compressor for double-precision floating-point
data. IEEE Trans. Comput., 58(1):18–31, January 2009.
ISSN 0018-9340. doi: 10.1109/TC.2008.131. URL
http://dx.doi.org/10.1109/TC.2008.131.

Chen, C., Choi, J., Brand, D., Agrawal, A., Zhang, W.,
and Gopalakrishnan, K. Adacomp : Adaptive residual
gradient compression for data-parallel distributed training.
CoRR, abs/1712.02679, 2017. URL http://arxiv.
org/abs/1712.02679.

Chen, J., Monga, R., Bengio, S., and Józefowicz,
R. Revisiting distributed synchronous SGD. CoRR,
abs/1604.00981, 2016. URL http://arxiv.org/
abs/1604.00981.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015. URL
http://arxiv.org/abs/1512.01274.

Cunningham, D., Lane, B., and Lane, W. Gigabit Ethernet
Networking. Macmillan Publishing Co., Inc., Indianapo-
lis, IN, USA, 1999. ISBN 1578700620.

Daily, J., Vishnu, A., Siegel, C., Warfel, T., and Amatya,
V. Gossipgrad: Scalable deep learning using gossip com-
munication based asynchronous gradient descent. CoRR,
abs/1803.05880, 2018. URL http://arxiv.org/
abs/1803.05880.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Hieber, F., Domhan, T., Denkowski, M., Vilar, D., Sokolov,
A., Clifton, A., and Post, M. Sockeye: A toolkit for neural
machine translation. CoRR, abs/1712.05690, 2017. URL
http://arxiv.org/abs/1712.05690.

Keuper, J. and Preundt, F.-J. Distributed training of deep
neural networks: Theoretical and practical limits of par-
allel scalability. In Proceedings of the Workshop on
Machine Learning in High Performance Computing En-
vironments, MLHPC ’16, pp. 19–26, Piscataway, NJ,
USA, 2016. IEEE Press. ISBN 978-1-5090-3882-4. doi:
10.1109/MLHPC.2016.6. URL https://doi.org/
10.1109/MLHPC.2016.6.

Khoram, S. and Li, J. DNN model compression under accu-
racy constraints, 2018. URL https://openreview.
net/forum?id=By0ANxbRW.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1,
NIPS’12, pp. 1097–1105, USA, 2012. Curran Associates
Inc. URL http://dl.acm.org/citation.cfm?
id=2999134.2999257.

11

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://arxiv.org/abs/1704.05021
http://www.sysml.cc/doc/182.pdf
http://www.sysml.cc/doc/182.pdf
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1707.09414
http://arxiv.org/abs/1707.09414
http://dx.doi.org/10.1109/TC.2008.131
http://arxiv.org/abs/1712.02679
http://arxiv.org/abs/1712.02679
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1803.05880
http://arxiv.org/abs/1803.05880
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1712.05690
https://doi.org/10.1109/MLHPC.2016.6
https://doi.org/10.1109/MLHPC.2016.6
https://openreview.net/forum?id=By0ANxbRW
https://openreview.net/forum?id=By0ANxbRW
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Priority-based Parameter Propagation for Distributed DNN Training

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-
Y. Scaling distributed machine learning with the pa-
rameter server. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation, OSDI’14, pp. 583–598, Berkeley, CA, USA,
2014. USENIX Association. ISBN 978-1-931971-16-
4. URL http://dl.acm.org/citation.cfm?
id=2685048.2685095.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep gra-
dient compression: Reducing the communication band-
width for distributed training. In International Conference
on Learning Representations, 2018.

Luo, L., Nelson, J., Ceze, L., Phanishayee, A., and Kr-
ishnamurthy, A. Parameter hub: a rack-scale parameter
server for distributed deep neural network training. CoRR,
abs/1805.07891, 2018. URL http://arxiv.org/
abs/1805.07891.

NVIDIA Corporation. Nvidia quadro p400. URL https:
//www.pny.com/nvidia-quadro-p4000.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Na-
ture, 323:533–, October 1986. URL http://dx.doi.
org/10.1038/323533a0.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and application to data-parallel dis-
tributed training of speech dnns. In Interspeech 2014,
September 2014.

Shanley, T. Infiniband. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002. ISBN
0321117654.

Shi, S. and Chu, X. Performance modeling and evaluation
of distributed deep learning frameworks on gpus. CoRR,
abs/1711.05979, 2017. URL http://arxiv.org/
abs/1711.05979.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of go without human knowledge.
Nature, 550:354–, October 2017. URL http://dx.
doi.org/10.1038/nature24270.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. URL http://arxiv.org/
abs/1409.1556.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015. URL http://
arxiv.org/abs/1512.00567.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y.,
and Li, H. Terngrad: Ternary gradients to reduce com-
munication in distributed deep learning. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 30, pp. 1509–1519. Cur-
ran Associates, Inc., 2017.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., ukasz
Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H.,
Stevens, K., Kurian, G., Patil, N., Wang, W., Young,
C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado,
G., Hughes, M., and Dean, J. Google’s neural machine
translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144, 2016. URL
http://arxiv.org/abs/1609.08144.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu,
Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An efficient
communication architecture for distributed deep learning
on GPU clusters. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pp. 181–193, Santa Clara,
CA, 2017. USENIX Association. ISBN 978-1-931971-
38-6.

Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Phanishayee,
A., Schroeder, B., and Pekhimenko, G. TBD: benchmark-
ing and analyzing deep neural network training. CoRR,
abs/1803.06905, 2018. URL http://arxiv.org/
abs/1803.06905.

12

http://dl.acm.org/citation.cfm?id=2685048.2685095
http://dl.acm.org/citation.cfm?id=2685048.2685095
http://arxiv.org/abs/1805.07891
http://arxiv.org/abs/1805.07891
https://www.pny.com/nvidia-quadro-p4000
https://www.pny.com/nvidia-quadro-p4000
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1711.05979
http://arxiv.org/abs/1711.05979
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1803.06905
http://arxiv.org/abs/1803.06905

