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ABSTRACT
Data parallel training is widely used for scaling distributed deep neural network (DNN) training. However, the
performance benefits are often limited by the communication-heavy parameter synchronization step. In this paper,
we take advantage of the domain specific knowledge of DNN training and overlap parameter synchronization
with computation in order to improve the training performance. We make two key observations: (1) different
parameters can afford different synchronization delays and (2) the optimal data representation granularity
for the communication may differ from that used by the underlying DNN model implementation. Based on
these observations we propose a new mechanism called Priority-based Parameter Propagation (P3), which,
synchronizes parameters at a finer granularity and schedules data transmission in such a way that the training
process incurs minimal communication delay. We show that: P3 can improve the training throughput of ResNet-50,
Sockeye and VGG-19 by as much as 25%, 38% and 66% respectively.

1 INTRODUCTION

In recent years, deep learning has attracted tremendous at-
tention in the machine learning community and beyond by
achieving notable success across a wide spectrum of tasks
such as computer vision (He et al., 2015), machine trans-
lation (Wu et al., 2016) and speech recognition (Amodei
et al., 2015). Training these models, however, take days to
weeks or sometimes even months to finish because of the
high degree of computational complexity, large number of
parameters and large datasets iteratively processed (Silver
et al., 2017; Zhu et al., 2018). This high computation cost
necessitates distributed training to keep the training time
reasonable.

Data parallel distribution with synchronous stochastic gra-
dient descent (SGD) is a popular method for scaling DNN
training over a cluster of machines (Chen et al., 2016). In
this paradigm, worker machines iteratively train a shared
model on different samples of the input dataset, synchroniz-
ing by combining parameter updates on every iteration. A
training iteration involve three main steps: (1) a forward
propagation step for calculating the value of a loss on a
subset of input dataset function using up-to-date parameter
values, (2) a subsequent backward propagation step for com-
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puting the gradients for every model parameter with respect
to the loss calculated, and (3) a parameter synchronization
step for aggregating local gradients of all the worker ma-
chines and updating the parameters with the corresponding
aggregated gradient values using the SGD algorithm.

During distributed training, each worker machine gener-
ates and synchronizes hundreds of megabytes of gradient
values on every iteration (Alan et al., 2018). Handling
such huge volume of data require high network bandwidth.
This problem is exacerbated with the emergence of larger
DNN models and better hardware accelerators, because
worker machines can generate more data faster. This leads
to more frequent network synchronization often beyond
the capabilities of the networking infrastructure in major
cloud providers and most academic clusters (Luo et al.,
2018). These factors often make distributed DNN training a
communication-bounded workload. In this work, we target
this problem and propose solutions to scale data parallel
training under limited bandwidth conditions.

One way to handle a heavy communication load is to use
higher bandwidth networks. There are network solutions
like Ethernet (Cunningham et al., 1999) and InfiniBand
networks (Shanley, 2002) that can offer over 100Gbps band-
width capacity networking infrastructure for faster param-
eter synchronization. However, these technologies are yet
to be adopted widely because of the relatively high deploy-
ment cost. Moreover, faster networks for distributed DNN
training may not be sustainable solution considering the rate
of advancements in hardware accelerators and growth in the
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model complexity (Luo et al., 2018).

An alternative approach is to reduce the communication
volume by compressing gradient values (Wen et al., 2017;
Lin et al., 2018). Since gradient values are generally repre-
sented as floating point numbers, it is extremely challenging
to get reasonable compression ratios from lossless com-
pression techniques (Burtscher & Ratanaworabhan, 2009).
Instead, recent work in this area propose lossy compression
techniques like gradient quantization (Seide et al., 2014;
Alistarh et al., 2017; Wen et al., 2017) and sparse parameter
synchronization (Aji & Heafield, 2017; Lin et al., 2018).
These methods, however, risk affecting the final conver-
gence accuracy of the model because of the information loss
that comes with value approximation and stale parameter
updates (Khoram & Li, 2018).

An orthogonal approach is to utilize the network bandwidth
more efficiently by leveraging domain specific opportunities
in DNN training. Because of the iterative nature of deep
learning training algorithms, the traffic generated is usually
bursty. A common practice used in some distributed ma-
chine learning frameworks is to attenuate these traffic bursts
by overlapping communication with computation. The train-
ing computation is performed as a sequence of operations
called layers. During backward propagation each of these
operations generate gradients for a subset of parameters
of the whole model. Frameworks exploit this sequential
layer-by-layer structure in deep learning training algorithms
by scheduling independent gradient computation operations
and network communication operations together. Frame-
works trigger synchronization for a layer as soon as the
gradients for that layer is generated and is ready to be prop-
agated (Zhang et al., 2017). Using this approach, parameter
synchronization can be effectively overlapped with back-
ward propagation.

In this work, we find new opportunities to reduce the com-
munication bottleneck in distributed DNN training. Our
first observation is that domain specific knowledge of DNN
training allows us to schedule parameter synchronization
not only based on when the data is generated, but also based
on when the data is consumed. Training computation is a
sequence of stages, operating on one or a few layers of the
model at a time. During training, the gradients of the layers
are generated from final to initial layers and subsequently
consumed in the reverse order in the next iteration. Fig-
ure 1 shows a snapshot of the training process containing
the backward propagation of one iteration and the forward
propagation of the next one. The temporal gap between
gradients generated and consumed per layer are higher for
final layers compared to the initial ones. Scheduling pa-
rameter synchronization using this information can help to
overlap communication with both backward and forward
propagation.

L4 L3 L2 L1 L1 L2 L3 L4

Backward Propagation Forward Propagation 

Nth 
Iteration 

(N+1)th 
Iteration 

Figure 1. Training iteration

Our second observation is that the layer-wise granularity
used by the underlying neural network implementation may
not always be optimal for parameter synchronization. In
our experiments, we observe that for certain models (e.g.,
VGG-19, Sockeye), parameter synchronization at finer gran-
ularity can improve the network utilization and reduce the
communication delay.

Based on these observations we propose a new synchroniza-
tion method called Priority-based Parameter Propagation
(P3).

1.1 Our Approach: Priority-based Parameter
Propagation (P3)

There are two main ideas behind P3: (1) During parameter
synchronization, P3 splits the gradients of the layers into
smaller slices and synchronize them independently. (2) P3
synchronizes the parameter slices based on their priority,
where priority of a parameter is defined by how soon it is
going to be consumed in the subsequent iteration. During
back propagation, P3 always allocates network cycles to
the highest priority parameters in the queue, preempting
synchronization of a previous low priority parameter slice if
necessary.

P3 offers following advantages over state-of-the-art mecha-
nisms. (1) P3 can provide improved training performance
under limited bandwidth conditions by better overlapping
communication with computation and utilizing the avail-
able network bandwidth more efficiently. (2) P3 is model-
agnostic and the implementation only requires minimal ef-
fort and is localized within the framework. (3) P3 always
communicates full gradients and does not affect model con-
vergence.

In summary, this paper makes the following contributions:

• We show that parameter synchronization at layer-wise
granularity can cause suboptimal resource utilization in
some models (e.g., VGG-19, Sockeye). We also show
that the parameter synchronization can be scheduled
better to efficiently use the available network band-
width by taking into account not only the information

2
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on when the gradients are generated, but also when
they are consumed.

• We present a new parameter synchronization mech-
anism, called Priority-based Parameter Propagation
(P3), which takes advantage of the temporal gap in
the generation and consumption of gradients of differ-
ent layers and propagates the gradients based on their
priorities, with initial layers getting higher priority.
We demonstrate that P3 has better resiliency towards
bandwidth limitations compared to other parameter
synchronization mechanisms.

• We implement P31 on MXNet (Chen et al., 2015), a
popular distributed machine learning framework, and
evaluated the performance against standard MXNet
implementation as the main baseline. With P3 , we
improve training performance of several state-of-the-
art models like ResNet-50 (He et al., 2015), Sockeye
(Hieber et al., 2017) and VGG-19 by as much as 25%,
38% and 66% correspondingly when available network
bandwidth is limited.

2 BACKGROUND

L1

L2 L3
L4

Input layer 

Output layer 
Hidden layers 

x

W1

W2 W3

Figure 2. Deep neural network structure

As illustrated in Figure 2, a DNN consists of a hierarchy of
parameters arranged as a sequence of layers ranging from as
few as 5-10 (Krizhevsky et al., 2012) to as many as 100s (He
et al., 2015). Each layer takes an input vector x and emits an
output vector based on a transformation function f(W,x),
where W is the parameter matrix of the layer. In Figure
2, the initial input layer of the DNN takes the application
specific data samples as input and the final output layer
produces the value of the DNN’s objective function after
applying a series of transformation operations defined by
the layers on the input vector. The output is generally a
scalar value representing the error in the prediction (loss).

DNN training is an iterative process for optimizing the objec-
tive function defined by the neural network. During training,
DNN runs a series of operations on the input vectors sam-

1We will be open-sourcing P3 implementation soon.

pled from the dataset and calculates the loss associated with
the model parameters on the input data. This is called a
forward propagation. After that, a backward propagation
step is performed that calculates the error contribution of
each parameter by computing gradients of all the layers with
respect to the loss. The backward propagation method for
calculating gradients is based on the chain rule of derivatives
and is therefore performed in the reverse order of forward
propagation i.e., gradients of the final layers are calculated
first and moves backwards to the initial layers, hence the
name backward propagation (Rumelhart et al., 1986). Once
the gradients are calculated, the parameters are updated us-
ing an optimization algorithm, usually Stochastic Gradient
Descent (SGD) (Bottou, 2010). This process (forward prop-
agation, backward propagation, and parameter update) is
repeated by randomly sampling input from a sufficiently
large dataset until the model converges to an acceptable
optima.

The training process takes many (e.g., thousands) iterations
to converge and is therefore highly computationally expen-
sive. The total training time can be dramatically reduced by
distributing the workload into multiple machines by taking
advantage of the data parallel nature of the SGD algorithm.
Data parallel training (Keuper & Preundt, 2016) involves
multiple workers simultaneously working on a shared pa-
rameter set with the whole dataset distributed equally among
them. Workers calculate gradients on same parameter val-
ues but on different input data samples and aggregate these
gradients in a synchronous fashion before performing pa-
rameter updates. This mechanism is called a synchronous
SGD algorithm (Chen et al., 2016).

There are many methods used in practice for synchronous
parameter update. The parameter server architecture (Li
et al., 2014) is one of the most popular methods among them.
A parameter server is a distributed shared memory system
that keeps track of the up-to-date values of all the model pa-
rameters. Before every iteration, each worker machine reads
the latest parameter values (θ) from the parameter server
and locally computes gradients for the inputs sampled from
its data shard. The workers then send the local gradients (O)
to the parameter server. The parameter server waits until it
receives gradient updates from all worker machines, then ag-
gregates the gradients together and updates the parameters
for the next iteration.

Figure 3 shows parameter server-based data parallel training
in a four-node cluster. The communication between worker
machine and parameter server is usually over a network and
often becomes the bottleneck in achieving linear scalability
in data parallel training (Zhu et al., 2018; Shi & Chu, 2017).

Popular machine learning frameworks, e.g., MXNet (Chen
et al., 2015) and TensorFlow (Abadi et al., 2016) can be
distributed over a cluster of machines using the parameter

3
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Figure 3. Parameter server architecture

server architecture. MXNet is designed specifically for mak-
ing data parallel training efficient and easy to execute. It
comes with a built-in implementation of parameter server
called KVStore. In MXNet, worker machines send out gra-
dients of a layer to the KVStore as soon as they are cal-
culated and issues a parameter pull request once all the
other workers have finished sending gradient updates for
that layer. This aggressive parameter synchronization mech-
anism makes data parallel training on MXNet very efficient.

TensorFlow, on the other hand, is designed as a more generic
machine learning framework. Hence it does not have an
explicit parameter server implementation. However, a pa-
rameter server can be implemented on top of the graph
computation framework provided by TensorFlow. Since
the parameter server is a part of the computation graph, the
communication between the worker subgraph and parameter
server subgraph is handled by the framework itself. Ten-
sorFlow automatically places Send and Receive operations
on the edges of the computation graph that crosses the de-
vice boundaries. Similar to MXNet, the worker subgraph
executes the send operation as soon as the gradients are com-
puted. However, since every training iteration is a separate
graph execution, the parameter pull request is not issued
until start of the next iteration. This disconnection in send-
ing gradients and receiving parameter updates could cause
underutilization of bidirectional bandwidth of the network.

Despite small differences such as described above, we ob-
serve that machine learning frameworks (MXNet, Tensor-
Flow, Caffe2, etc.) follow two common behaviors. For
performance reasons, the operations in the DNN implemen-
tation usually prefer to perform computations on large data
representations and because of this, the gradients for all the
parameters in a layer is usually generated in a single shot.
We observe that (1) because the gradients are generated
in a layer level granularity, frameworks perform parameter
synchronization at the same granularity as well. Moreover,
since the DNN implementation is written as a dependency
graph in these frameworks, (2) the gradients of the layers
are sent out to the parameter server over the network as soon
as the backward propagation of that layer has completed. In
this work, we address the limitation associated with these
two observations.

Apart from parameter server architecture, there are other

mechanisms used for gradient aggregation. For example,
there are many variations of MPI all reduce operation specif-
ically designed for machine learning workloads (Daily et al.,
2018; Awan et al., 2017). In this work, we implement P3
over the parameter server architecture in MXNet. However,
P3 design principles, namely parameter slicing and priority-
based propagation, are general enough to be applied to any
gradient aggregation methods.

3 LIMITATIONS OF PARAMETER
SYNCHRONIZATION

Current parameter synchronization mechanisms have major
limitations in effectively utilizing available network band-
width due to two main reasons. The first one comes with the
aggressive synchronization performed by the frameworks
where the gradients of the layers are sent to the parameter
server immediately after finishing the backward propagation
of that layer. Since the backward propagation progresses
from the final to the initial layer, the gradients are also
generated and propagated in that order. However, the next
forward propagation can only be started after receiving the
parameter updates for the first layer. We observe that un-
der limited bandwidth, gradient propagation of the final
layers can induce queuing delays on the initial layers and
subsequently delay the next iteration. This prevents the
communication from being efficiently overlapped with the
forward propagation.

L3 L2 L1 L1 L2 L3

Time

1 2 3 4 5 6 7 8 9 10 110

L3

L2

L1

Backward
propagation

Forward  
propagation

  Delay  

Computation Parameter Synchronization 

(a) Aggressive synchronization
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(b) Priority based synchronization
Figure 4. Parameter synchronization

Figure 4(a) shows parameter synchronization of a 3-layered
4
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DNN. In this example, the forward and backward propaga-
tion of each layer takes 1 time unit and parameter synchro-
nization takes 2 time units. Since the parameters of the lay-
ers are aggressively synchronized, the total delay between
the two iterations is twice the time taken for synchronizing
the first layer. Moreover, since the order of parameter up-
dates are always maintained throughout the training, during
forward propagation the network stays completely idle.

This effect becomes more dominant when the communi-
cation time required for individual layers vary due to the
presence of dense layers in the DNN, as the synchronization
time need for dense layers are relatively higher. Figure 5
shows the parameter distribution of three popular image clas-
sification models: ResNet-50, InceptionV3, VGG-19 and a
machine translation model Sockeye. The skewed parameter
size distribution is a general trend in image classification
models where the final fully connected layers are usually
heavier and can potentially induce higher queuing delay on
to the lighter initial convolution layers.

The second limitation is due to the parameter synchroniza-
tion being performed at a full layer-wise granularity. The
communication cost of parameter synchronization consists
of three major components: (1) gradient propagation time
for the worker machine in order to send the gradients to the
parameter server, (2) time taken by the parameter server
to aggregate the gradients and perform parameter update,
and (3) parameter propagation time taken by the parameter
server to send the updated parameters back to worker ma-
chine(s). As we described in Section 2, current distributed
machine learning frameworks overlap gradient propagation
of one layer with the backward propagation of the next one.
On top of this, at parameter server side, the gradient propaga-
tion of a layer is overlapped with the parameter update of the
previous layer. This type of communication-computation
pipelining is effective only if the size of the layers are more
or less uniform. Unfortunately, this is usually not the case.
For example, Figure 5(c) shows that VGG-19 contains a
single fully connected layer which has 71.5% of all the
parameters in the entire network. We observe that the dis-
proportionately heavy layers like this could severely affect
the effective utilization of network bidirectional bandwidth.

This effect is explained in Figure 6(a) using the previous
example of parameter synchronization of a 3-layered DNN.
In this case, gradient propagation, parameter update and
parameter propagation of the second layer take thrice as
much time as that of the first and third layers. Because
of this imbalance, the communication delay in this model
is mainly dominated by the second layer. The parameter
synchronization of the first and the third layer can only
be partially overlapped with the second layer. As seen
in the example, this severely underutilizes the computing
resources and bidirectional bandwidth by spending the last

3 time steps just for receiving parameter updates from the
parameter server.

From the above observations we draw two major conclu-
sions. (1) Application domain-specific knowledge of DNNs
can be utilized to schedule communication not only based
on when the data is generated in the backward propagation,
but also based on when the data is going to be consumed in
the subsequent forward propagation. Scheduling parame-
ter synchronization based on this information and sending
gradients conservatively could reduce the delay by better
overlapping communication with computation. (2) The op-
timal granularity required for parameter synchronization
may differ from the one used for data representation by the
underlying model implementation. Synchronizing param-
eters at a finer granularity can better utilize the available
computing and networking resources.

4 P3: DESIGN AND IMPLEMENTATION

Based on the above observations, we propose a new method
for parameter synchronization called P3. As explained in
Section 1.1, P3 has two core components: (1) parameter
slicing, and (2) priority-based update.

P3 synchronizes parameters at a finer granularity by slicing
the gradient matrix of the individual layers in the DNN
into smaller pieces and synchronizing them independently.
By doing so, we observe that the network utilization can
be improved. In Figure 6(b), splitting the second layer
into 3 smaller packets and independently synchronizing
them achieves better overlap between data transmission and
parameter update. Since the synchronization of all the slices
are perfectly pipelined, the network stays busy most of the
time. The bidirectional bandwidth is completely utilized
during the synchronization of all the intermediate slices.
This considerably reduces the communication cost in these
types of DNNs. In this example, with parameter slicing the
communication cost has reduced by 30%.

After splitting the layers into smaller pieces, we assign pri-
orities to each slice. These slices inherit their priority values
from its parent layer. Priorities of the layers are assigned
based on the order in which they are processed in the for-
ward propagation. The first layer gets the highest priority
and the priority decreases moving towards the end, with
last layer getting the lowest priority. During the parameter
synchronization, gradient slices are transmitted based on
their priority as shown in Figure 4(b). In this example, with
prioritization enabled, the delay between two iterations has
reduced by half and the communication is evenly overlapped
with both forward and backward propagation.

We implemented P3 by modifying MXNet parameter server
module called KVStore. Below, we explain how the baseline
KVStore works and then the modifications we made for P3.

5
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(a) ResNet-50 (b) InceptionV3 (c) VGG-19 (d) Sockeye

Figure 5. Parameter distribution
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Figure 6. Coarse and fine granularity

4.1 KVStore: Baseline system

KVStore is a wrapper implemented on top of the light-
weight parameter server ps-lite (Li et al., 2014). KVStore
has two components: KVWorker which runs locally to the
worker machine as part of the training process and a separate
server process called KVServer. KVWorker is responsible
for sending gradients and receiving parameter updates from
KVServer. KVServer is responsible for receiving gradients
from KVWorkers, aggregating them and updating the pa-
rameters while ensuring data consistency. KVServer stores
the parameters at layer level as a key-value pair, where key
is the index of a layer and value is an array of floating points
each corresponding to the parameter values of that layer.
For load balancing purposes, more than one KVServers
can be used for the training with the parameters equally
sharded between them. For better resource utilization, a
common practice is to run a KVServer on every machine
with a worker process.

Before starting the training process, KVStore initializes
and distributes the parameters of all the layers among the

KVServers. KVStore follows a simple heuristic for fair
distribution of parameters. Layers with size smaller than a
fixed threshold are assigned to a randomly chosen KVServer.
Parameters of larger layers are split equally among the
KVServers. This is different from parameter slicing used
in P3 (explained in Section 4.2). The threshold is a config-
urable parameter and is set to 106 parameters by default.

KVServer exposes two main interfaces to each KVWorker
for sending gradients and requesting updated parameters:
a Push request and Pull request. During training, MXNet
issues a parameter synchronization request for a layer to
the KVServer through the KVWorker as soon as the back
propagation of that layer has finished. KVWorker serializes
(and fragments in case of large layers) the gradient matrix
and issues a Push request to the corresponding KVServer(s).
KVServer keeps a counter for the number of updates re-
ceived on a key-value pair for maintaining data consistency.
KVServer aggregates gradients until it has received updates
from all the workers. Once all the gradient updates have
been received, KVServer updates the parameters using the
aggregated gradient values.

Once the parameters are updated KVServer notifies all the
workers and resets the counter for that key-value pair. When
KVWorker receives a notification, it immediately issues a
Pull request to the KVServer(s) for the corresponding up-
dated parameter values. KVServer then sends the latest
parameter values in response and KVWorker (reconstructs
for large layers) updates the local parameter values for the
next iteration. MXNet overlaps the parameter synchroniza-
tion of the layers by asynchronously issuing Push requests
for the layers whose gradients are ready to be propagated.

4.2 P3: Implementation

In order to implement P3, we modify KVWorker and
KVServer into P3Worker and P3Server. On the worker
side, when a parameter synchronization is issued, P3Worker
splits the gradient matrix of the layer based on a prede-
fined size threshold (choice of this threshold is explained
in Section 5.6). Unlike KVStore, this threshold defines the
maximum granularity with which layers are split. This is the
parameter slicing part in P3. For load balancing purposes,
each of these slices are assigned to a P3Server in a round
robin fashion.

6
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The priority-based gradient propagation is implemented
using a producer-consumer mechanism communicating
through a priority queue. After parameter slicing, the pro-
ducer part of P3Worker assigns priorities to the individual
slices and pushes slices onto the priority queue all at once.
A separate consumer thread in the P3Worker continuously
polls the highest priority slice from the queue and sends
the slice to the P3Server through the network with its pri-
ority stamped on the packet header. The consumer thread
uses blocking network calls, so the rate at which the prior-
ity queue is polled is automatically adjusted based on the
networking delays of the data transmission. This simple
producer-consumer model makes sure that the network does
not experience bursty traffic flow from the P3Worker at
the same time the backward propagation is not hindered
at the worker side. Also the slice with the highest priority
in the priority queue always gets the first preference for
transmission.

We also add a producer-consumer mechanism at the receiv-
ing end of the P3Server in order to deal with in-network de-
lays. The packets received at the P3Server are pushed onto a
priority queue with the priority assigned by the P3Worker as
the key. A server consumer thread then polls from this queue
and processes the packet the same way as in a KVServer.
Prioritization at the P3Server ensures highest priority pa-
rameters are processed first.

Apart from these modifications, we remove the explicit
update notification and pull requests from the KVServer.
P3Server immediately broadcasts the updated parameters
to all workers once it has received all of the updates. Since
workers always issue a pull request after every push, this
change does not affect the correctness of the training algo-
rithm. This modification was necessary because MXNet
only issues a pull request once it has received the update
notification for all the slices of a layer. Eliminating this
helped to improve the bidirectional bandwidth utilization.
Since individual slices are synchronized independent to each
other, sending gradients for a slice can be overlapped with
the parameter updates received by another.

5 EVALUATION

5.1 Methodology

We have evaluated the P3 implementation on three image
classification models: ResNet-50 (He et al., 2015), Incep-
tionV3 (Szegedy et al., 2015), VGG-19 (Simonyan & Zisser-
man, 2014) and on an LSTM-based model, Sockeye (Hieber
et al., 2017). In all performance evaluation experiments
we chose the standard MXNet KVStore implementation
described in Section 4.1 as the baseline. Since P3 imple-
mentation does not interfere with the model implementation
or the training algorithm, the model convergence is not af-

fected in any way. This means the baseline and P3 would
follow the same training curve for a given hyper parame-
ter set. Under this condition, the improvement in training
performance is completely determined by the rate at which
input data is processed. Therefore the primary performance
comparison metric we use is the training throughput, which
is the number of total training samples processed by the
worker machines in one second. The throughput measure-
ments are taken after training the models for a few iterations
until the throughput has become stable and averaged over
1000 iterations. In all the experiments we set the number
of KVServers/P3Servers equal to the number of worker
machines.

We conduct performance evaluation of P3 in three different
experiments. Section 5.2 shows how resilient P3 is towards
bandwidth limitations in the network. We perform this ex-
periment by training the model on a four machine cluster
each equipped with one Nvidia P4000 GPU (NVIDIA Cor-
poration) and interconnected with a 100Gbps InfiniBand
network (Shanley, 2002). We measure throughput variation
while artificially limiting the network interface transmis-
sion rate using Linux’s tc qdisc utility. Section 5.3 shows
how well P3 utilizes the available bandwidth and reduces
the network idle time. The network utilization is measured
per interface level using Linux’s bwm-ng tool at a 10 mil-
lisecond granularity. Finally, in Section 5.4 we test the
scalability of P3 on different cluster sizes. This experiment
is conducted on AWS using g3.4xlarge machine instances
on a 10Gbps network.

In Section 5.5, we compare the convergence accuracy for
models trained using P3 and compression based techniques.
For this comparison study, we picked the state-of-the-art
compression technique Deep Gradient Compression (DGC)
(Lin et al., 2018). We implemented DGC on top of the
baseline MXNet based on the details provided in the original
paper and the information collected from the authors. In
addition to these experiments, we have also evaluated the
effects of different parameter slice sizes on the training
throughput in Section 5.6.

5.2 Bandwidth v.s. throughput

In this experiment, we analyze how much improvement P3
can provide on throughput compared to the baseline im-
plementation when the network bandwidth is not sufficient
enough for training. We measure the training throughput of
ResNet-50, InceptionV3, VGG-19 and Sockeye on a tightly
controlled four-machine cluster by setting different trans-
mission rates on the network interface on all the machines.
Figure 7 compares the throughput from P3 with the baseline
system for different network bandwidths. We also mea-
sured the performance benefits achieved from only using
the parameter slicing optimization.
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(a) ResNet-50 (b) InceptionV3 (c) VGG-19 (d) Sockeye

Figure 7. Bandwidth v.s. Throughput

In Figure 7(a) and 7(b), both baseline and P3 give simi-
lar training performance when the network bandwidth is
sufficient enough for scaling these models on 4 machines.
However, the baseline throughput starts to drop in ResNet-
50 below 6Gbps. At the same time, P3 maintains the linear
throughput until the bandwidth drops below 4Gbps. This
is because P3 reduces the peak bandwidth required for the
model by efficiently overlapping communication with the
computation. At 4Gbps, P3 provides 26% more throughput
than the baseline. For InceptionV3, the maximum speed up
obtained is 18%. It is interesting to note that these models
does not benefit from parameter slicing, as the layer sizes
are relatively small in these DNNs (Figure 5(a) and 5(b)).

Figure 7(c) and 7(d) shows the throughput of VGG-19 and
Sockeye. These models contain one or two very large lay-
ers (Figure 5(c) and 5(c)), and because of the presence of
these large layers, the parameter slicing optimization alone
is giving considerable improvement in performance. At
30Gbps, parameter slicing can provide 49% speedup on
VGG-19. The speedup is further improved with P3 by as
much as 66% at 15Gbps. Sockeye is a special case among
other models. Unlike image classification models, the heav-
iest layer in this model is the initial layer. In Figure 7(d),
Sockeye performance has improved by a maximum of 38%
with P3. We observe that P3 always performs better than
the baseline with higher performance benefits under limited
bandwidth conditions. Performance benefits of P3 diminish
when the network bandwidth is lower. This is because the
communication time is significantly higher and there is little
room for improvement by overlapping communication with
computation.

5.3 Network utilization

This experiment compares the network utilization of P3 with
the baseline system. We conduct this experiment for ResNet-
50, VGG-19 and Sockeye and measure the traffic generated
and received by one of the four worker machines. Figure 8
shows the network utilization of baseline system. The base-
line implementation has bursty network traffic generated
with regular peaks and crests across all models. This pat-
tern is observed in TensorFlow as well. Figure 8(b) shows
the network utilization of ResNet-50 on TensorFlow over
4Gbps network. Similar to MXNet, TensorFlow also under-

utilizes the available network bandwidth. For the Sockeye
model, the network idle time of ResNet-50 and VGG-19 is
extremely dominant because of the heavy initial layer. More-
over, the inbound and outbound traffics are not overlapped
as the baseline fails to fully utilize bidirectional bandwidth.

Figure 9 shows the network utilization graph with P3. We
observe that P3 improves the network utilization compared
to baseline. In Figure 9(a) and 9(b), the network idle time
has been considerably lowered with P3. Especially for
Sockeye in Figure 9(c), P3 utilizes bidirectional bandwidth
more effectively than baseline system . This is one of the
key reasons for the speedup observed for Sockeye model
despite having a heavy initial layer.

5.4 Scalability

We perform scalability analysis on ResNet-50, VGG-19 and
Sockeye in order to show how well P3 can perform on large
clusters compared to the baseline system. We conducted this
experiment by distributing models on clusters of different
sizes (2, 4, 8 and 16) over a 10Gbps network. Figure 10(a)
shows, for ResNet-50 both the baseline and P3 perform
similarly. As shown in Section 5.2, 10Gbps network is more
than enough for linearly scaling ResNet-50. The throughput
of VGG-19 has been considerably improved with P3 by as
much as 61% on an eight machine cluster (Figure 10(b)).

Figure 10(c) shows the scalability of Sockeye. LSTM-based
models are very hard to scale over multiple machines, be-
cause of the heavy initial layers and difference in iteration
time in worker machines due to the variable sequence length
of input data. With P3, we improve Sockeye throughput by
as much as 18% on eight-machine cluster.

5.5 Training accuracy

As described in the Section 1, there are many compression
techniques proposed for improving data parallel training per-
formance. These methods can provide higher performance
gains compared to P3 , however, at the cost of loss in the
final convergence accuracy. In this section, we compare
convergence accuracy of P3 with the state-of-the-art com-
pression technique Deep Gradient Compression (DGC) (Lin
et al., 2018).
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(a) ResNet-50 at 4Gbps (b) ResNet-50 at 4Gbps on Ten-
sorFlow

(c) VGG-19 at 15Gbps (d) Sockeye at 4Gbps

Figure 8. Network utilization of the baseline system

(a) ResNet-50 at 4Gbps (b) VGG-19 at 15Gbps (c) Sockeye at 4Gbps

Figure 9. Network utilization of P3

(a) ResNet-50 (b) VGG-19 (c) Sockeye

Figure 10. Throughput scaling with different number of machines
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Figure 11. P3 v.s. DGC

We trained ResNet-110 on the CIFAR-10 dataset over a 4
machine cluster with both P3 and DGC using 5 different
hyper parameter settings for 160 epochs. Figure 11 shows
the validation accuracy range of P3 and DGC from these
experiments. The dark bands represent the gap between the
worst and best accuracy on the 5 hyper parameter setting.
We observe that the final accuracy obtained with P3 is al-
ways better than DGC. We calculate an average accuracy
drop of 0.004 with DGC.

Unlike compression based mechanisms like DGC, P3 al-

ways communicate the full gradients with other worker ma-
chines and does not make any modification in the original
SGD algorithm. Because of this the performance benefits
from P3 comes without any penalty on model accuracy.

5.6 Parameter slice size selection

As we showed in Section 4, a small gradient packet size can
improve the network utilization and, in turn, can improve
overall training throughput. In this section, we show how
the size of the parameter slice affects training performance.
Figure 12 shows the throughput obtained for ResNet-50 and
VGG-19 with P3 on different parameter slice sizes.

Initially, throughput increases as size decreases, and reaches
a peak at 50, 000 and then it start dropping. This happens be-
cause if the size is made too small, the overhead of synchro-
nizing packets at very small granularity is higher and dwarfs
the benefits of parameter slicing. In all our experiments,
we used a maximum granularity of 50, 000 parameters per
slice.
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(a) ResNet-50 (b) VGG-19 (c) Sockeye

Figure 12. Granularity v.s. Throughput

6 RELATED WORK

In this paper, we describe the key limitations in the data
parallel deep learning distribution techniques used in pop-
ular machine learning frameworks (e.g., TensorFlow and
MXNet), and propose solutions to mitigate these limitations
by taking advantage of domain specific characteristics of
deep learning models. To the best of our knowledge, this is
the first work to summarize and address these issues.

One notable prior work which proposes domain specific
optimizations for data parallel deep learning workloads is
Poseidon (Zhang et al., 2017). This work introduced the
idea of wait-free-back-propagation (WFBP) which hides
the communication overhead behind back propagation by
independently synchronizing individual layers in the neural
network. In our work, we built upon this idea, and show
that we can overlap computation with both forward and
backward propagation. We further improve this idea by
using parameter slicing that utilizes network bandwidth
better.

Most recent work in this area tries to reduce communica-
tion overhead by sending fewer gradients. One popular
method to reduce data transmission is gradient quantization
(representing the gradient values using fewer bits). For ex-
ample, 1-bit SGD (Seide et al., 2014) represents a 32-bit
floating point gradient value in a single bit. In order to
account for the information loss that comes with the value
approximation, 1-bit SGD also add an error feedback in the
SGD algorithm. 1-bit SGD can provide up to 10× speed
up. QSGD (Alistarh et al., 2017) and TernGrad (Wen et al.,
2017) use similar methods but also provide mathematical
guarantees on convergence.

Another approach is sparse parameter synchronization. The
idea is to synchronize only a few parameters on every itera-
tion instead of the whole model. Gradient dropping method
only synchronizes parameters which have gradient values
more than a threshold. The threshold is calculated based on
a fixed compression ratio (Aji & Heafield, 2017). AdaComp
(Chen et al., 2017) automatically tunes the compression ra-
tio depending on the local gradient activity and achieves up
to 200× compression.

All the above techniques make trade offs between training
performance and model accuracy because of the information
loss introduced by value approximation or stale parameter
updates (Khoram & Li, 2018). P3 on the other hand, does
not introduce any information loss since it always sends full
gradient matrix on every iteration.

Recent work, called Deep Gradient Compression(DGC)
(Lin et al., 2018), offers up to 600× compression and around
5× speedup in low bandwidth networks while maintaining
the same baseline accuracy on several DNN models. DGC
use local gradient accumulation and momentum correction
techniques to maintain the same accuracy. Even though
the authors report no accuracy loss with DGC, there is no
formal proof on the convergence guarantees cited in the
paper. And as shown in Section 5.5, we find it difficult
to reproduce their results despite substantial effort2. In
our experiments, P3 always gives better accuracy than the
DGC. We conclude that our mechanism is a safer approach,
as P3 does not introduce information loss in the training
algorithm and therefore there is no potential risk of accuracy
loss. Moreover, our proposal is an orthogonal approach
to the compression techniques and can be used on top of
compression mechanisms to further improve performance.

7 CONCLUSION

In this paper, we analyze the data parallel distributed training
methods used in current machine learning frameworks and
observe that they fail to fully utilize available network band-
width and induces high penalty on training performance
under bandwidth limitations. Based on this observation we
propose a new parameter synchronization method called P3
which improves the training performance by better utiliz-
ing the available network bandwidth. We implemented P3
over MXNet and demonstrate it to have higher resiliency
towards bandwidth constraints and better scalability than the
baseline MXNet implementation. With P3, we improved
training throughput of ResNet-50 by as much as 25%, Sock-
eye 38% and VGG-19 66%.

2This includes personal communication with the authors in
order to get all their experiments correctly.
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