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ABSTRACT
Data parallel training is widely used for scaling distributed deep neural network (DNN) training. However, the
performance benefits are often limited by the communication-heavy parameter synchronization step. In this paper,
we take advantage of the domain specific knowledge of DNN training and overlap parameter synchronization
with computation in order to improve the training performance. We make two key observations: (1) the
optimal data representation granularity for the communication may differ from that used by the underlying DNN
model implementation and (2) different parameters can afford different synchronization delays. Based on these
observations, we propose a new synchronization mechanism called Priority-based Parameter Propagation (P3).
P3 synchronizes parameters at a finer granularity and schedules data transmission in such a way that the training
process incurs minimal communication delay. We show that P3 can improve the training throughput of ResNet-50,
Sockeye and VGG-19 by as much as 25%, 38% and 66% respectively on clusters with realistic network bandwidth.

1 INTRODUCTION

Training DNN is notoriously time consuming because of the
high degree of computational complexity involved in tuning
billions of parameters and processing large amount data
(MLPerf, 2018). Data parallel distribution with synchronous
stochastic gradient descent (SGD) is a popular method for
accelerating the training by parallelizing the process over a
cluster of machines (Chen et al., 2016).

In this paradigm, the input data set is sharded among the
worker machines and they train a shared DNN model itera-
tively by independently computing the parameter updates
and synchronizing them at the end of every iteration. A sin-
gle iteration on a worker machine involves three main steps:
(1) forward propagation step for calculating the value of a
loss function on a subset of local data shard, (2) a subse-
quent backward propagation step for computing the gradi-
ents for every model parameter based on the computed loss,
and (3) a parameter synchronization step for aggregating
local gradients from all the worker machines and updating
the parameters using the SGD algorithm (Bottou, 2010).

On every iteration, each worker machine generates and syn-
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chronizes hundreds of megabytes of gradient values (Alan
et al., 2018). This often makes data parallel training a
communication-bound workload (Zhu et al., 2018). Han-
dling such huge volume of traffic require high bandwidth
networks like Gigabit Ethernet (Cunningham et al., 1999)
or InfiniBand (Shanley, 2002). However, these technologies
are yet to be adopted widely because of the high deployment
cost. Moreover, this problem has been exacerbated with the
emergence of faster hardware accelerators and larger DNNs
as it leads to increase in data transmission rate and volume
(Nvidia, 2018; Shazeer et al., 2017). Most of the major
cloud providers and academic clusters are having trouble in
catering to such high bandwidth demands (Luo et al., 2018).
In this work, we propose solutions to scale data parallel
training under limited bandwidth conditions.

Gradient compression is one of the popular approaches
aimed at reducing the communication overhead. Since gra-
dient values are generally represented as floating point num-
bers, it is extremely challenging to get reasonable compres-
sion ratios from lossless compression techniques (Burtscher
& Ratanaworabhan, 2009). Instead, recent studies propose
lossy compression techniques like gradient quantization
(Seide et al., 2014; Alistarh et al., 2017; Wen et al., 2017)
and sparse parameter synchronization (Aji & Heafield, 2017;
Lin et al., 2018). These methods, however, risk affecting
the final convergence accuracy of the model because of the
information loss that comes with the value approximation
and stale parameter updates (Khoram & Li, 2018).

An orthogonal approach is to utilize the available network
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bandwidth more efficiently by leveraging domain specific
opportunities in DNN training. The traffic generated by the
training processes are generally bursty because of its iter-
ative nature. A common practice used in some distributed
machine learning (ML) frameworks is to attenuate these
traffic bursts by overlapping communication with compu-
tation. Since the training computation is performed as a
sequence of operations (layers), during backward propaga-
tion, the gradients for the parameters associated with each
layer are generated one after another. Frameworks such
as TensorFlow (Abadi et al., 2016), MXNet (Chen et al.,
2015) and Caffe2 (Jia et al., 2014), exploit this sequential
layered structure to overlap parameter synchronization with
backpropagation by issuing synchronization of each layer
immediately after its gradients are computed.

In this work, we find new opportunities to better overlap
communication and computation. Our first observation is
that the domain specific knowledge of DNN training algo-
rithm allows us to better schedule parameter synchronization
not only based on when the gradients are generated, but also
based on when the data is consumed. During training, the
gradients of the layers are generated from final to initial
layers and subsequently consumed in the reverse order in
the next iteration. Figure 1 shows a snapshot of the train-
ing process containing the backward propagation of one
iteration and the forward propagation of the next one. The
temporal gap between gradients generated and consumed
per layer are higher for final layers compared to the initial
ones. Scheduling parameter synchronization using this in-
formation can help to overlap communication with both the
forward and the backward propagation.
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Figure 1. Training iterations

Secondly, the layer-wise granularity used by the underlying
neural network implementation may not always be opti-
mal for parameter synchronization. In our experiments,
for certain heavy models (e.g., VGG (Simonyan & Zis-
serman, 2014), Sockeye (Hieber et al., 2017)), parameter
synchronization at a finer granularity improves the network
utilization and reduces the communication delay.

Based on these observations, we propose a new synchro-
nization mechanism called Priority-based Parameter Prop-
agation (P3).

1.1 Our Approach

P3 consists of two key components: (1) Parameter Slicing:
P3 splits the layers into smaller slices and synchronize them
independently. (2) Priority-based Update: P3 synchronizes
the parameter slices based on their priority, where the pri-
ority of a slice is defined by when it is required again in
the subsequent iteration. During backpropagation, P3 al-
ways allocates network cycles to the highest priority slices
in the queue, preempting synchronization of the slices from
a previous lower priority layer if necessary.

P3 offers following advantages over state-of-the-art param-
eter synchronization mechanisms (Zhang et al., 2017; Lin
et al., 2018). (1) P3 can provide improved training perfor-
mance under limited bandwidth conditions by better over-
lapping communication with computation and utilizing the
available network bandwidth more efficiently. (2) P3 is
model-agnostic, its implementation requires minimal pro-
gramming effort, and all required changes are localized
within the framework. (3) P3 always communicates full
gradients and does not affect model convergence.

In summary, this paper makes the following contributions:

• We show that parameter synchronization at layer-wise
granularity can cause suboptimal resource utilization in
heavy models (e.g., VGG, Sockeye). We also show that
the parameter synchronization can be scheduled better
to efficiently use the available network bandwidth by
taking into account not only the information on when
the gradients are generated, but also when they are
consumed.

• We present a new parameter synchronization mech-
anism called Priority-based Parameter Propagation
(P3), which uses parameter slicing and priority-based
updates to reduce communication overhead. We
demonstrate that P3 has better resiliency towards band-
width limitations compared to other state-of-the-art
synchronization mechanisms (Zhang et al., 2017).

• We implement and open source P31 on MXNet (Chen
et al., 2015), a popular distributed ML framework, and
evaluate its performance against standard MXNet im-
plementation as the main baseline. We observe that,
P3 improves training performance of several state-of-
the-art models like ResNet-50 (He et al., 2015), Sock-
eye (Hieber et al., 2017) and VGG-19 (Simonyan &
Zisserman, 2014) by as much as 25%, 38% and 66%
correspondingly.

2 BACKGROUND

The fundamental building blocks of DNNs are mathemat-
ical operations such as convolution, matrix multiplication,

1https://github.com/anandj91/p3

https://github.com/anandj91/p3


Priority-based Parameter Propagation for Distributed DNN Training

L1

L2 L3
L4

Input layer 

Output layer 
Hidden layers 

x

θ1

θ2 θ3

Figure 2. Deep neural network structure

and activation functions. These operations perform certain
transformations (fθ(x)) on an input vector (x) using the
parameters (θ) associated with it. A DNN is defined by a
sequence of such operations (layers). In Figure 2, the initial
layer takes the application specific data samples as input and
produces a prediction as an output vector at the final layer.
The goal of the training algorithm is to find the parameter
values which can make the most accurate predictions.

DNN training usually starts from a random parameter ini-
tialization and iterates by randomly sampling input vectors
from the training dataset. On every iteration, the DNN
computes the output vector on the inputs and calculates the
error associated with the prediction (loss) by feeding the out-
put vector to a loss function. This step is called a forward
propagation. After that, a backward propagation step is
performed that calculates the error contribution of each pa-
rameter by computing gradients of all the layers with respect
to the loss. The backward propagation method for calculat-
ing gradients is based on the chain rule of derivatives and
is therefore performed in the reverse order of forward prop-
agation, i.e., gradients of the final layer is calculated first
and moves backwards to the initial layers, hence the name
backward propagation (Rumelhart et al., 1986). Once the
gradients are calculated, the parameters are updated using
an optimization algorithm like Stochastic Gradient Descent
(SGD) (Bottou, 2010). The iterations are repeated several
times over the training dataset until the model converges to
an acceptable prediction accuracy.

Each iteration is highly compute-intensive which makes the
training process very time consuming. The total training
time can be dramatically reduced by distributing the work-
load into multiple machines by taking advantage of the data
parallel nature of the SGD algorithm. Data parallel training
(Keuper & Preundt, 2016) involves multiple workers simul-
taneously training a shared DNN with the training dataset
distributed equally among them. On each iteration, workers
independently calculate the gradients locally for a common
parameter value assignment but on different input data sam-
ples. Then the gradients are aggregated in a synchronous
fashion for performing parameter updates. This method is

called a synchronous SGD algorithm (Chen et al., 2016).

Parameter server architecture (Li et al., 2014) is one of
the most popular methods used in practice for parameter
synchronization and it is widely supported in most of the dis-
tributed ML frameworks (e.g., MXNet (Chen et al., 2015),
TensorFlow (Abadi et al., 2016), Caffe2 (Jia et al., 2014)).
The parameter server keeps track of the up-to-date values
of all the model parameters. Before every iteration, each
worker machine reads the latest parameter values (θ) from
the parameter server and locally computes gradients for the
inputs sampled from its data shard. The workers then send
the local gradients (O) to the parameter server. The param-
eter server waits until it receives gradient updates from all
worker machines, then aggregates the gradients together and
updates the parameters for the next iteration.

Figure 3 shows parameter server-based data parallel training
in a four-node cluster. The communication between worker
machine and parameter server is usually over a network and
often becomes the bottleneck in achieving linear scalability
in data parallel training (Zhu et al., 2018; Shi & Chu, 2017).
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Figure 3. Parameter server architecture

State-of-the-art ML framework MXNet is designed specif-
ically for making data parallel training efficient and easy
to execute. It comes with a built-in implementation of pa-
rameter server called KVStore. In MXNet, worker machines
send out gradients of a layer to the KVStore as soon as they
are calculated, and issue parameter pull requests once all
the other workers have finished sending the gradients of that
layer. This aggressive parameter synchronization makes
data parallel training very efficient on MXNet.

TensorFlow, on the other hand, is designed as a more generic
ML framework. Hence it does not have an explicit param-
eter server implementation. However, a parameter server
can be implemented on top of the graph computation frame-
work provided by TensorFlow. Since the parameter server
is a part of the computation graph, the communication be-
tween the worker subgraph and parameter server subgraph
is handled by the framework itself. TensorFlow automati-
cally places Send and Receive operations on the edges of
the computation graph that crosses the device boundaries.
Similar to MXNet, the worker subgraph executes the send
operation as soon as the gradients are computed. However,
since every training iteration is a separate graph execution,
the parameter pull request is not issued until start of the
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next iteration. This disconnection in sending gradients and
receiving parameter updates could cause underutilization of
bidirectional network bandwidth.

Despite small differences described above, we observe that
state-of-the-art ML frameworks (e.g., MXNet, TensorFlow,
Caffe2.) have two common characteristics. For performance
reasons, the operations in the DNN implementation usually
perform computations on large data representations. There-
fore, the gradients for all the parameters within a layer are
usually generated in a single shot. We observe that, because
the gradients are generated at the layer level granularity,
frameworks perform parameter synchronization at the same
granularity as well. We also observe that since the DNN
implementation is written as a dependency graph in these
frameworks, the gradients of the layers are sent out to the
parameter server over the network as soon as the backward
propagation of that layer has completed. In this work, we
address the limitations associated with these two character-
istics of ML frameworks.

Apart from parameter server architecture, there are other
mechanisms used for gradient aggregation. For example,
there are many variations of MPI all reduce operation specif-
ically designed for ML workloads (Daily et al., 2018; Awan
et al., 2017). In this work, we implement P3 over the param-
eter server architecture in MXNet. However, we believe, P3
design principles (namely, parameter slicing and priority-
based propagation) are general enough to be applied to any
gradient aggregation methods.

3 LIMITATIONS OF PARAMETER
SYNCHRONIZATION

Current parameter synchronization mechanisms have major
limitations in effectively utilizing available network band-
width due to two main reasons. The first one comes with the
aggressive synchronization performed by the frameworks
where the gradients of the layers are sent to the parameter
server immediately after finishing the backward propagation
of that layer. Since the backward propagation progresses
from the final to the initial layer, the gradients are also
generated and propagated in that order. However, the next
forward propagation can only be started after receiving the
updated parameters of the first layer. We observe that, under
limited bandwidth, gradient propagation of the final layers
can induce queuing delay onto the gradient propagation of
the initial layers and subsequently delay the next iteration.
This prevents the communication from being overlapped
with the forward propagation.

Figure 4(a) shows the parameter synchronization of a 3-layer
DNN, where the forward and backward propagation of each
layer takes one time unit and parameter synchronization
takes two time units. With aggressive synchronization, the
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(a) Aggressive synchronization
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Figure 4. Parameter synchronization

total delay between the two iterations is twice the time taken
for synchronizing the first layer because of the additional
queuing delay induced by the previous layers. Moreover,
during forward propagation the network stays totally idle.

This effect becomes even more noticeable when the com-
munication time required for individual layers vary due to
the presence of fully connected (FC) layers in the DNN, as
the synchronization time needed for such dense layers is rel-
atively higher. Figure 5 shows the parameter distribution of
two popular image classification models: ResNet-50, VGG-
19, and a machine translation model: Sockeye. The skewed
parameter size distribution is a general trend in image classi-
fication models where the final FC layers are usually heavier
and can potentially induce higher queuing delays on to the
lighter initial convolution layers.

The second limitation is due to the parameter synchroniza-
tion being performed at layer-level granularity. The commu-
nication time of parameter synchronization consists of three
major parts: (1) gradient propagation time for the worker
machine to send the gradients to the parameter server, (2)
parameter update time taken by the parameter server to
aggregate the gradients and update the parameters, and (3)
parameter propagation time taken by the parameter server
to send the updated parameters back to worker machine(s).
As we describe in Section 2, current distributed ML frame-
works overlap gradient propagation of one layer with the
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(a) ResNet-50
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(b) VGG-19
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(c) Sockeye

Figure 5. Parameter distribution

backward propagation of the next one. On top of this, at the
parameter server side, the gradient propagation of a layer is
overlapped with the parameter update of the previous layer.
This type of communication-computation pipelining is ef-
fective only if the size of the layers are more or less uniform.
Unfortunately, this is usually not the case. For example,
Figure 5(b) shows that VGG-19 contains a single FC layer
which has 71.5% of all the parameters in the entire network.
We observe that the disproportionately heavy layers like
this could severely affect the efficient utilization of network
bidirectional bandwidth.
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Figure 6. Coarse and fine granularity

This effect is explained in Figure 6(a) using the previous ex-
ample of parameter synchronization of the 3-layered DNN.
In this case, gradient propagation, parameter update, and
parameter propagation of the second layer take thrice as
much time as that of the first and third layers. Because
of this imbalance, the communication delay in this model
is mainly dominated by the second layer. The parameter

synchronization of the first and the third layer can only
be partially overlapped with the second layer. As seen in
the example, this severely underutilizes the computing re-
sources and bidirectional bandwidth by spending the last
three time steps just for receiving parameter updates from
the parameter server.

From the above observations we draw two major conclu-
sions. First, the application domain-specific knowledge of
DNNs can be utilized to schedule communication not only
based on the data generation in the backward propagation,
but also based on when the data consumption in the subse-
quent forward propagation. Scheduling parameter synchro-
nization based on this information and sending the gradients
conservatively could reduce the delay by better overlapping
communication with both the forward and the backward
propagation. Second, the optimal granularity required for
parameter synchronization may differ from the one used for
data representation by the underlying model implementation.
Synchronizing parameters at a finer granularity can better
utilize the available computing and networking resources as
we empirically show in Section 5.4.

4 P3: DESIGN AND IMPLEMENTATION

Based on the above observations, we propose a new method
for parameter synchronization called Priority-based Param-
eter Propagation (P3). As explained in Section 1.1, P3
has two core components: (1) parameter slicing, and (2)
priority-based update.

Once the gradients are computed, gradient aggregation and
updates of each parameter can be performed independent to
each other. We take advantage of this property of the SGD
algorithm for parameter slicing optimization. P3 splits the
layers into smaller slices of parameters and each of these
slices are then independently synchronized. In Figure 6(b),
applying parameter slicing optimization on the second layer
achieves better overlap between data transmission and pa-
rameter update. Moreover, the bidirectional bandwidth is
completely utilized as the synchronization of slices are per-
fectly pipelined. In this example, parameter slicing reduces
the communication cost by 30%.
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After splitting the layers into smaller pieces, P3 assigns pri-
orities to every slice. The slices inherit priority values from
their parent layers. We determine layers’ priorities based
on the order in which they are processed in the forward
propagation. The first layer gets the highest priority and
it decrements moving towards to the end, with final layer
getting the lowest priority. During backward propagation,
parameter synchronization of the slices are issued based on
their priorities as illustrated in Figure 4(b). In this example,
with the priority-based update, the delay between the two it-
erations has been reduced by half and the communication is
evenly overlapped with both the forward and the backward
propagation.

We implemented P3 by modifying the parameter server
module in MXNet called KVStore. Below, we first explain
how the baseline KVStore works, and then we describe our
modifications to support P3.

4.1 KVStore: Baseline system

KVStore is a wrapper implemented on top of the light-
weight parameter server called ps-lite (Li et al., 2014). KV-
Store has two components: KVWorker, which runs locally to
the worker machine as part of the training process and a sep-
arate server process, called KVServer. KVServer receives
gradients from KVWorkers, aggregates them, and updates
the parameters while ensuring data consistency. The pa-
rameters are stored as key-value pairs, where the key is the
index of a layer and the value is an array of floating points
each corresponding to the parameter values of that layer.
For load balancing purposes, more than one KVServer can
be used for the training with the parameters equally sharded
between them. For better resource utilization, a common
practice is to run one KVServer on every machine along
with the worker process.

Before starting the training process, KVStore initializes
and distributes the parameters of all the layers among
KVServers. KVStore follows a simple heuristic for fair
distribution of parameters. Layers with size smaller than a
fixed threshold are assigned to a randomly chosen KVServer.
Parameters of larger layers are split equally among the
KVServers. This is different from parameter slicing used
in P3 (explained in Section 4.2). The threshold is a config-
urable parameter and is set to 106 parameters by default.

KVServer exposes two interfaces to KVWorker for sending
gradients and requesting updated parameters: a Push request
and a Pull request. During training, MXNet issues a param-
eter synchronization request for a layer to the KVServer
through the KVWorker as soon as the backpropagation of
that layer has finished. KVWorker serializes (and fragments
in case of large layers) the gradient matrix and issues a Push
request to the corresponding KVServer(s). KVServer waits
until it has received gradient updates from all the workers

for that key-value pair. Once all the updates have been re-
ceived, KVServer aggregates the gradients and updates the
parameters.

Once the parameters are updated, KVServer notifies all
the workers. When KVWorker receives a notification, it
immediately issues a Pull request to the KVServer(s) for
the corresponding updated parameter values. KVServer
then sends the latest parameter values in response, and KV-
Worker (reconstructs the parameter array for large layers
and) updates the local parameter values for the next iteration.
MXNet overlaps the parameter synchronization with back-
ward propagation by asynchronously issuing Push requests
for the layers whose gradients are ready to be propagated.

4.2 P3: Implementation

In order to implement P3, we modify KVWorker and
KVServer into P3Worker and P3Server. On the worker
side, when a parameter synchronization is issued, P3Worker
splits the gradient matrix of the layer based on a predefined
size threshold (explained in more details in Section 5.7).
Unlike in KVStore, this threshold defines the maximum
granularity with which layers can be split. This is the pa-
rameter slicing part in P3. Each of these slices are assigned
to P3Servers in a round-robin fashion.

The priority-based gradient propagation is implemented
using a producer-consumer mechanism communicating
through a priority queue. After parameter slicing, the pro-
ducer part of P3Worker assigns priorities to the individual
slices and pushes them into the priority queue all at once.
A separate consumer thread in the P3Worker continuously
polls the highest priority slice from the queue and sends the
slice to the P3Server through the network with its priority
added to the packet header. The consumer thread uses block-
ing network calls. Hence the rate at which the priority queue
polled is automatically adjusted based on the networking
delay. This simple producer-consumer model makes sure
that the network does not experience bursty traffic flow from
the P3Worker, and that the backward propagation is not hin-
dered at the worker side. Also the slice with the highest
priority in the queue always gets the first preference for
transmission.

We also add a producer-consumer mechanism at the receiver
in the P3Server in order to deal with the in-network delays.
The packets received at the P3Server are pushed into a prior-
ity queue with the priority assigned by the P3Worker as the
key. A server consumer thread then polls from this queue
and processes the packets the same way as in a KVServer.
Prioritization at the P3Server ensures highest priority pa-
rameters are processed first.

Apart from these modifications, we remove the explicit
update notification and pull requests from the KVServer.
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P3Server immediately broadcasts the updated parameters
to all workers once it has received all of the updates. Since
workers always issue a pull request after every push, this
change does not affect the correctness of the training algo-
rithm. This modification was necessary, because otherwise
MXNet only issues a pull request once it has received the up-
date notification for all the slices of a layer. Eliminating this
helped to improve the bidirectional bandwidth utilization.

5 EVALUATION

5.1 Methodology

We have evaluated the P3 implementation on three image
classification models: ResNet-50 (He et al., 2015), Incep-
tionV3 (Szegedy et al., 2015), VGG-19 (Simonyan & Zis-
serman, 2014) and on a machine translation model, Sockeye
(Hieber et al., 2017). We chose the standard MXNet KVS-
tore implementation described in Section 4.1 as the baseline
in all performance evaluation experiments.

Since P3 implementation does not interfere with the model
implementation or the training algorithm, the model con-
vergence is not affected in any way. This means that the
baseline and the P3 would follow the same training curve
for a given hyper-parameter set. The improvement in train-
ing performance is completely determined by the rate at
which input data is processed. Therefore the primary perfor-
mance comparison metric we use is the training throughput,
which is the number of total training samples processed
by the worker machines in one second. We measure the
throughput after training the models for a few iterations
until the throughput has become stable and then averaged
over thousand iterations. In all the experiments, we set the
number of KVServers/P3Servers equal to the number of
worker machines.

5.2 Summary of the experiments

We conduct performance evaluation of P3 in three different
experiments. Section 5.3 shows how resilient P3 is towards
the bandwidth constraints in the network. We perform this
experiment by training the model on a four machine cluster
each equipped with one Nvidia P4000 GPU (Nvidia, 2017)
and interconnected with a 100Gbps InfiniBand network
(Mellanox, 2018). We measure throughput variation while
artificially limiting the network interface transmission rate.
This simulates more realistic networking infrastructure in
modern cloud services where bandwidth is usually between
1Gbps and 25Gbps (ec2instances.info, 2019). Section 5.4
shows how well P3 utilizes the available bandwidth and
reduces the network idle time. Finally, in Section 5.5 we
test the scalability of P3 on different cluster sizes. This
experiment is conducted on the AWS (Amazon, 2019) using
g3.4xlarge machine instances on a 10Gbps network.

In Section 5.6, we compare the convergence accuracy for
models trained using P3 and compression based techniques.
For this comparison study, we pick the state-of-the-art com-
pression technique Deep Gradient Compression (DGC) (Lin
et al., 2018). We implemented DGC on MXNet based on
the details provided in the original paper and information
collected from the authors. In addition to these experiments,
we have also evaluated the effects of different parameter
slice sizes on the training throughput in Section 5.7. We
have also included additional results in the Appendix B
based on our reviewers’ feedback.

5.3 Bandwidth v.s. throughput

In this experiment, we measure the training throughput of
ResNet-50, InceptionV3, VGG-19, and Sockeye on a tightly
controlled four-machine cluster by setting different transmis-
sion rates on the network interface on all the machines using
Linux’s tc qdisc utility (Alexey N. Kuznetsov, 1999). Fig-
ure 7 compares the throughput from P3 against the baseline
system for different network bandwidths between 1Gbps
and 30Gbps. We also measured the performance benefits
achieved from the parameter slicing optimization alone.

In Figure 7(a) and 7(b), both baseline and P3 give similar
training performance when the network bandwidth is suf-
ficiently high for scaling these models on four machines.
However, the baseline throughput starts to drop in ResNet-
50 below 6Gbps. At the same time, P3 maintains the linear
throughput until the bandwidth drops below 4Gbps. This
is because P3 reduces the peak bandwidth required for the
model by efficiently overlapping communication with the
computation. At 4Gbps, P3 provides 26% more throughput
than the baseline. For InceptionV3, the maximum speed up
obtained is 18%. It is interesting to note that these models
do not benefit from parameter slicing, as the layer sizes are
relatively small in these DNNs (see Figure 5(a)).

Figure 7(c) and 7(d) show the throughput of VGG-19 and
Sockeye respectively. These models contain one or more
very large layers (Figure 5(b) and 5(c)), and because of
the presence of these large layers, the parameter slicing
optimization alone is giving considerable improvement in
performance. At 30Gbps, parameter slicing can provide
49% speedup on VGG-19. The speedup is further improved
with P3 by as much as 66% at 15Gbps. Sockeye is a spe-
cial case among other models. Unlike image classification
models, the heaviest layer in this model is the initial layer.
In Figure 7(d), Sockeye performance has improved by a
maximum of 38% with P3.

We observe that P3 always performs better than the baseline
with relatively higher performance benefits when bandwidth
is limited. Since P3 reduces the peak network bandwidth
required for the training, it is more suitable than baseline on
a shared network cluster where effective bandwidth avail-
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Figure 7. Bandwidth v.s. Throughput

able for a single training process is much lower than the
maximum capacity of the network. However, the speed-up
diminishes when the network bandwidth is too low. This
is because the communication time is significantly higher
than computation and there is little room for improvement
by overlapping communication and computation.

5.4 Network utilization

This experiment compares the network utilization of P3
with the baseline system. We conduct this experiment for
ResNet-50, VGG-19, and Sockeye and measure the traf-
fic generated from and received by one of the four worker
machines. The network utilization is measured at the inter-
face level using Linux’s bwm-ng tool (Volker Gropp, 2019)
with 10 millisecond precision. Figure 8 shows the network
utilization of the baseline system. The baseline implementa-
tion has bursty network traffic generated with regular peaks
and crests across all models. This pattern is observed in
other frameworks like TensorFlow (Abadi et al., 2016) and
Poseidon (Zhang et al., 2017) as well (see Appendix B). For
Sockeye and VGG-19, the network idle time is extremely
dominant because of the presence of heavy layers. More-
over, the inbound and outbound traffics are not overlapped
as the baseline fails to fully utilize bidirectional bandwidth.

In contrast, Figure 9 shows the network utilization graph
with P3. We observe that P3 significantly improves the
network utilization compared to the baseline. In Figure 9(a)
and 9(b), the network idle time is seen to be reduced with
P3. Especially for Sockeye in Figure 9(c), P3 utilizes bidi-
rectional bandwidth more effectively than baseline system.
This is one of the key reasons for the speedup observed for
Sockeye despite having heavy initial layers.

5.5 Scalability

We perform scalability analysis on ResNet-50, VGG-19,
and Sockeye in order to show how well P3 can perform on
large clusters compared to the baseline system. We conduct
this experiment by distributing models on AWS g3.4xlarge
clusters of different sizes (2, 4, 8 and 16 machines) over a
10Gbps network.

Figure 10(a) shows that on ResNet-50 both the baseline

and the P3 achieve similar performance. As shown in Sec-
tion 5.3, 10Gbps network is more than enough for linearly
scaling ResNet-50. The throughput of VGG-19 has been
considerably improved with P3 by as much as 61% on an
eight machine cluster (Figure 10(b)).

Figure 10(c) shows the scalability of Sockeye. LSTM-based
models like Sockeye are very hard to scale over multiple
machines, because of the heavy initial layers and difference
in iteration time in worker machines due to the variable
sequence length of input data. Nevertheless, with P3, we
improve throughput of Sockeye by as much as 18% on an
8-node cluster.

5.6 Training accuracy

As we noted in Section 1, there are many compression tech-
niques proposed for improving data parallel training per-
formance. These methods can provide higher performance
gains compared to P3, however, at the cost of reduction
in the model quality. In this section, we compare conver-
gence accuracy of P3 with the state-of-the-art compression
technique called Deep Gradient Compression (DGC) (Lin
et al., 2018). DGC reduces the amount of data transferred by
taking advantage of the sparsity in the gradient updates. The
key idea is to synchronize only those parameters with top-k
gradients and accumulate the rest locally. In this experiment,
we use a sparsity threshold of 99.9% per layer based on the
configurations used in the original paper (Lin et al., 2018).

We trained ResNet-110 on the CIFAR-10 dataset for 160
epochs over a four-machine cluster with both P3 and DGC
using five different hyper-parameter settings. Figure 11
shows the validation accuracy range of P3 and DGC from
these experiments. The dark bands represent the gap
between the worst and best accuracy on the five hyper-
parameter setting. We observe that the final accuracy ob-
tained with P3 is always better than DGC. We calculate an
average accuracy drop of 0.4% with DGC.

Unlike compression based mechanisms (like DGC), P3 al-
ways communicate the full gradients with other worker ma-
chines and does not make any modification in the original
SGD algorithm. As a result, the performance benefits from
P3 comes without any penalty on model accuracy.
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Figure 8. Network utilization of the baseline system
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5.7 Parameter slice size selection

As we show in Section 4, a small gradient packet size can
improve the network utilization and, in turn, can improve
overall training throughput. In this section, we show how
the size of the parameter slice affects training performance.
Figure 12 shows the throughput obtained for ResNet-50 and
VGG-19 with P3 on different parameter slice sizes.

Initially, the throughput increases as size decreases, and
reaches its peak at 50, 000 parameters when it starts to drop.
This happens because if the size is too small, the overhead of
synchronizing packets at a very small granularity is getting
too high, reducing the benefits of parameter slicing. In all
our experiments, we use a maximum granularity of 50, 000
parameters per slice as it is found to be optimal empirically.

6 RELATED WORK

In this paper, we describe the key limitations in the data
parallel deep learning distribution techniques used in pop-
ular ML frameworks (e.g., TensorFlow and MXNet), and
propose solutions to mitigate these limitations by taking ad-
vantage of domain specific characteristics of deep learning
models. To the best of our knowledge, this is the first work
to summarize and address these limitations.

One notable prior work which proposes domain specific
optimizations for data parallel deep learning workloads is
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Poseidon (Zhang et al., 2017). This work introduced the
idea of wait-free-back-propagation (WFBP) which hides
the communication overhead behind backpropagation by
independently synchronizing individual layers in the neural
network. We build upon this idea, and show that we can
overlap computation with both forward and backward prop-
agation. We further improve this idea by using parameter
slicing that utilizes network bandwidth better.

Most of the recent papers in this area try to reduce commu-
nication overhead by sending fewer gradients. One popular
method to reduce data transmission is gradient quantization
(representing the gradient values using fewer bits). For ex-
ample, 1-bit SGD (Seide et al., 2014) represents a 32-bit
floating point gradient value in a single bit. Additionally, an
error feedback is added to the SGD algorithm in order to
account for the information loss that comes with the value
approximation. 1-bit SGD can provide up to 10× speed-
up for traditional speech recognition applications. Another
work called QSGD (Alistarh et al., 2017) proposes a family
of compression schemes which balance the trade-off be-
tween the accuracy and gradient precision to provide good
performance. Similar to QSGD, TernGrad (Wen et al., 2017)
uses 3-level numerical compression to reduce data transfer
in data parallel training. Both QSGD and TernGrad pro-
vide mathematical guarantees on the bounds of final model
convergence accuracy. In contrast, P3 always sends the full
32-bit parameter values.

Another approach is the sparse parameter synchronization.
The idea is to synchronize only a few parameters on every
iteration instead of the whole model. Gradient dropping
method only synchronizes parameters which have gradient
values larger than a selected threshold. The threshold is cal-
culated based on a fixed compression ratio (Aji & Heafield,
2017). AdaComp (Chen et al., 2017) automatically tunes the
compression ratio depending on the local gradient activity
and achieves up to 200× compression.

All the above techniques make the trade-off between training
performance and model accuracy because of the information
loss introduced by value approximation or stale parameter
updates (Khoram & Li, 2018). P3 on the other hand, does

not introduce any information loss since it always sends full
gradient matrix on every iteration.

On the other hand, a more recent work called Deep Gradient
Compression(DGC) (Lin et al., 2018) offers up to 600×
compression and around 5× speedup in low bandwidth net-
works while maintaining the same baseline accuracy on
several DNN models. DGC use local gradient accumulation
and momentum correction techniques to maintain the same
accuracy. Even though the authors report no accuracy loss
with DGC, there is no formal proof on the convergence guar-
antees cited in the paper. And as shown in Section 5.6, we
find it difficult to reproduce their results despite substantial
effort.2 In our experiments, P3 always gives better accuracy
than the DGC. Based on these results, we conclude that
our mechanism is a safer approach, as P3 does not intro-
duce information loss in the training algorithm and therefore
there is no potential risk of accuracy loss. Moreover, our
proposal is an orthogonal approach to the compression tech-
niques and can be used on top of compression mechanisms
to further improve performance.

7 CONCLUSION

In this paper, we analyze the data parallel distributed train-
ing methods used in current ML frameworks and observe
that they fail to fully utilize available network bandwidth
and induces high penalty on training performance under
network bandwidth limitations. Based on this observation,
we propose a new parameter synchronization method called
P3, which improves the training performance by better uti-
lizing the available network bandwidth. We implement P3
on top of the state-of-the-art ML framework MXNet and
demonstrate it to have higher resiliency towards bandwidth
constraints and better scalability than the baseline MXNet
implementation. With P3, we improve training throughput
of ResNet-50 by as much as 25%, Sockeye by 38% and
VGG-19 by 66%. We also have made the source code of P3
publicly available.3

2This includes personal communication with the authors in
order to get all their experiments correctly.

3https://github.com/anandj91/p3

https://github.com/anandj91/p3
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Priority-based Parameter Propagation for Distributed DNN Training

A ARTIFACT APPENDIX

A.1 Abstract

Our artifact provides the P3 source code, benchmarks to
regenerate the performance evaluations and scripts to install
P3 and run the benchmarks.

Evaluating P3 require more than one machine each equipped
with at least one GPU and interconnected with high
bandwidth network. The artifact includes three image-
classification (ResNet-50, InceptionV3 and VGG-19) and
one machine translation (Sockeye) benchmarks. For image-
classification benchmarks, we use ImageNet1K data set
which should be prepared manually. Machine translation
benchmark uses IWSLT15 data set and is included in the
artifact. The benchmark script launches data parallel train-
ing process in the given list of machines and outputs the
training throughput.

A.2 Artifact check-list (meta-information)
• Algorithm: Priority-based Parameter Propagation (P3).

• Program: ResNet-50, InceptionV3, VGG-19 and Sockeye.
All benchmarks are included.

• Compilation: GCC 5.4 or above, CUDA 8 or above, cuDNN
6 or above.

• Transformations: No transformation tools required.

• Binary: Source code and scripts included to build binaries
on Debian/Linux machines.

• Data set: ImageNet1K data set need to be pre-
pared manually (download from http://www.image-
net.org/challenges/LSVRC/2012/nonpub-downloads).
IWSLT15 data set is included.

• Run-time environment: No restriction on operating sys-
tems. Installation scripts are included for Debian based Linux
operating systems (Ubuntu 16.04 recommended). Sudo ac-
cess required. Software dependencies include - OpenCV,
OpenBLAS, CUDA, cuDNN and python3.

• Hardware: Require more than one machine (four recom-
mended) each equipped with Nvidia GPUs and high band-
width interconnect (at least 10Gbps).

• Run-time state: There is a warm-up period for the training
to stabilize. We recommend to take the measurements after
skipping first 1000 iterations.

• Execution: Run the benchmarks for 1000 iterations once
the benchmark execution has stabilized.

• Metrics: The primary metric of comparison is the average
training throughput.

• Output: The benchmarking scripts would output the num-
ber of input data points processed per second.

• Experiments: Follow the scripts provided below.

• How much disk space required (approximately)?: About
200 GB per machine should be enough for running experi-
ments. Data set preparation might require about 500 GB.

• How much time is needed to prepare workflow (approxi-
mately)?: About one hour to prepare the dataset and com-
pile the source code.

• How much time is needed to complete experiments (ap-
proximately)?: About 15 minutes per benchmark.

• Publicly available?: Yes.

• Code licenses: Apache License 2.0

• Workflow framework used?: No

• Archived?: Yes. https://doi.org/10.5281/zenodo.2549852

A.3 Description

A.3.1 How delivered

P3 source code is publicly available on GitHub:
https://github.com/anandj91/p3. Latest version of
P3 along with benchmarks can be downloaded from
https://doi.org/10.5281/zenodo.2549852. The unpacked
artifact require less than 2 GB disk space.

A.3.2 Hardware dependencies

We recommend to use at least four machines each equipped with
Nvidia GPUs and interconnected with at least 10Gbps network.

A.3.3 Software dependencies

We strongly recommend to build the code on Ubuntu 16.04 with
GCC 5.4. Building the source code require CUDA, cuDNN,
libopenblas-dev, libopencv-dev and python3-dev. We recommend
to use CUDA 9 with cuDNN 7.

A.3.4 Data sets

Build and install the source code before preparing the data set.
Once prepared, data set need to be copied to the exact same direc-
tory location in all the machines.

ImageNet1K: We use ImageNet1K dataset for ResNet-
50, InceptionV3 and VGG-19 which can be downloaded
from http://www.image-net.org/challenges/LSVRC/2012/nonpub-
downloads. Once the data set is downloaded it need to be converted
to RecordIO format. Rest of the instructions assume that all im-
ages are stored as individual image files, and images belonging
to the same class are placed in the same directory. All these class
directories are then in the same root directory, say imnet.

Go to the root directory of the source code and run the following
commands for preparing the data set:

$ py thon t o o l s / im2rec . py −− l i s t −−r e c u r s i v e \
−− t r a i n−r a t i o 0 . 9 5 imagene t1k imne t

$ py thon t o o l s / im2rec . py −− r e s i z e 480 \
−−q u a l i t y 95 −−num−t h r e a d 28 \
imagene t1k imne t

IWSLT15: Used for Sockeye benchmark. Included in the artifact.
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A.4 Installation

Install CUDA and cuDNN before installing P3. After that, down-
load and unpack the artifact in all the machines at the same location.
Go to the root directory and run the following command for build-
ing and installing P3:

$ . / s e t u p−u t i l s / i n s t a l l −mxnet−ubuntu−py thon . sh

Follow the same steps for installing the baseline after switching to
the baseline branch in the git repository.

A.5 Experiment workflow

Before running the experiments, choose one of the machines as
the master machine. Update the hosts file at the root directory of
the source code in the master machine with the IP addresses of all
the participating machines. Make sure that master machine can
ssh to all the machines without password.

Run the following command to execute the benchmarks:

$ . / r u n e x p . sh −m ( r e s n e t | i n c e p | vgg | sockeye )

Following tc qdisc command can be used to limit the per interface
peak transmission rate:

$ sudo t c q d i s c add dev < i f a c e > r o o t t b f r a t e \
< t x r a t e >g b i t l a t e n c y 50ms b u r s t 50 kb mtu 10000

A.6 Evaluation and expected result

The script outputs the training throughput to the standard output.
The average throughput can be calculated and compared with the
measurements given in the corresponding figures in the Section
5. Depending on the similarity of the hardwares being used for
the experiments, speedups of comparable magnitude and trends
should be observed.

A.7 Experiment customization

The benchmark scripts can be further customized to adjust the per
machine mini-batch size and hosts file location. Full usage is given
below:

$ . / r u n e x p . sh [−b <mini−b a t c h s i z e >]
[−h <p a t h t o h o s t s f i l e >]
−m ( r e s n e t | i n c e p | vgg | sockeye )

A.8 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/
submission-20190109.html

• http://cTuning.org/ae/
reviewing-20190109.html

• https://www.acm.org/publications/
policies/artifact-review-badging

B ADDITIONAL RESULTS

B.1 Network Utilization

In this section, we show that the limitations described in Section 3
exist in other frameworks as well.
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Figure 13. ResNet-50 on TensorFlow at 4Gbps
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Figure 14. InceptionV3 on Poseidon at 1Gbps

Figures 13 and 14 show the network utilization measurements
of TensorFlow and Poseidon taken while training ResNet-50 and
InceptionV3 respectively on a 4-node cluster. Similar to MXNet,
these frameworks also utilize network poorly even under band-
width constraints.

B.2 Asynchronous SGD

ASGD algorithm does not perform synchronous update at the pa-
rameter server which means each worker machine is only blocked
by its on parameter updates in an iteration as opposed to waiting
for all the participating workers to finish. ASGD algorithm runs
faster than synchronized SGD, however, at the cost of reduced
convergence rate because of the stale parameter updates.
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Figure 15. ASGD v.s. P3

We measured the accuracy of ResNet-110 on CIFAR-10 on a 4-
machine cluster and 1Gbps network with both P3 and ASGD. P3
reaches a final top-1 accuracy of 93% whereas for ASGD, it is only
88%. Additionally, P3 is able to achieve 80% accuracy roughly
6× faster than ASGD.
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