
Supplementary proofs : AGGREGATHOR

Byzantine-resilience and Convergence Speed.

Abstract

In [1], Krum, the first provably Byzantine resilient algorithm for SGD, was
introduced. Krum only uses one worker per step, which hampers its speed of con-
vergence, especially in best case conditions when none of the workers is actually
Byzantine. The idea behind MULTI-KRUM, of using m > 1 different workers
per step was mentioned in [1], without however any proof neither on its Byzantine
resilience nor on its slowdown. The present technical report closes this open prob-
lem and provides proofs of (weak) Byzantine resilience, convergence, and

√
m
n

slowdown of MULTI-KRUM compared to the optimal averaging in the absence of
Byzantine workers. Based on that, and on the theoretical work of [3], we prove the
similar

√
m
n

slowdown of AGGREGATHOR and its (strong) Byzantine resilience.
We deduce that AGGREGATHOR ensures strong Byzantine resilience and the very
fact that it is

√
m
n

times as fast as the optimal algorithm (averaging) in the absence
of Byzantine workers.

AGGREGATHOR is the composition of MULTI-KRUM and BULYAN, which can
be viewed as generalization (also using m different workers per step to leverage
the fact that f , possibly less than a minority can be faulty) of Bulyan, the defense
mechanism of [3]. Before presenting in Section 2, our proofs of convergence and
slow down of MULTI-KRUM and in Section 3 our proofs of convergence and slow
down of BULYAN and hence AGGREGATHOR, we introduce in Section 1 a tool-
box of formal definitions: weak, strong, and (α, f)–Byzantine resilience. We also
present a necessary context on non-convex optimization, as well as its interplay
with the high dimensionality of machine learning together with the

√
d leeway it

provides to strong attackers.

1 Theoretical Context
Intuitively, weak Byzantine resilience requires a GAR to guarantee convergence de-
spite the presence of f Byzantine workers. It can be formally stated as follows.

Definition 1 (Weak Byzantine resilience). We say that aGAR ensures weak f -Byzantine
resilience if the sequence x(k) (Equation 2 in the main paper) converges almost surely
to some x∗ where ∇Q(x∗) = 0, despite the presence of f Byzantine workers.

On the other hand, strong Byzantine resilience requires that this convergence does
not lead to ”bad” optimums, and is related to more intricate problem of non-convex
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Figure 1: In a non-convex situation, two correct vectors (black arrows) are point-
ing towards the deep optimum located in area B, both vectors belong to the plane
formed by lines L1 and L2. A Byzantine worker (magenta) is taking benefit from
the third dimension, and the non-convex landscape, to place a vector that is head-
ing towards one of the bad local optimums of area A. This Byzantine vector is
located in the plane (L1,L3). Due to the variance of the correct workers on the
plane (L1,L2), the Byzantine one has a budget of about

√
3 times the disagree-

ment of the correct workers, to put as a deviation towards A, on the line (L3),
while still being selected by a weak Byzantine resilient GAR, since its projection
on the plane (L1,L2) lies exactly on the line (L1), unlike that of the correct work-
ers. In very high dimensions, the situation is amplified by

√
d.

optimization, which, in the presence of Byzantine workers, is highly aggravated by the
dimension of the problem as explained in what follows.

Specificity of non-convex optimization. Non-convex optimization is one of the ear-
liest established NP-hard problems [4]. In fact, many, if not all of the interesting but
hard questions in machine learning boil down to one answer: ”because the cost function
is not convex”.

In distributed machine learning, the non-convexity of the cost function creates two
non-intuitive behaviours that are important to highlight.

(1) A ”mild” Byzantine worker can make the system converge faster. For instance,
it has been reported several times in the literature that noise accelerates learning [2,
4]. This can be understood from the ”S” (stochasticity) of SGD: as (correct) workers
cannot have a full picture of the surrounding landscape of the loss, they can only draw
a sample at random and estimate the best direction based on that sample, which can
be - and is probably - different the true gradient. But on expectation (over samples)
this gradient estimate is equal to the true gradient. Moreover, due to non-convexity,
even the true gradient might be leading to the local minima where the parameter server
is. By providing a wrong direction (i.e. not the true gradient, or a correct stochastic
estimation), a Byzantine worker might end up providing a direction to get out of that
local minima ! Unless of course when the computational resources of that Byzantine
worker can face the high-dimensional landscape of the loss and find a truly misleading

2



update vector.
(2) Combined with high dimensional issues, non-convexity explains the need for

strong Byzantine resilience. Unlike the ”mild” Byzantine worker, a strong adversary
with more resources than the workers and the server, can see a larger picture and pro-
vide an attack that requires a stronger requirement. Namely, a requirement that would
cut the

√
d leeway offered to an attacker in each dimension. Figure 1 provides an

illustration.
This motivates the following formalization of strong Byzantine resilience.

Definition 2 (Strong Byzantine resilience). We say that a GAR ensures strong f -
Byzantine resilient if for every i ∈ [1, d], there exists a correct gradient G (i.e., com-
puted by a non-Byzantine worker) s.t. E|GARi −Gi| = O( 1√

d
). The the expectation

is taken over the random samples (ξ in Equation 4 of the main paper)and vi denotes
the ith coordinate of a vector v.

For the sake of our theoretical analysis, we also introduce the definition of (α, f)–
Byzantine resilience (Definition 3). This definition is a sufficient condition (as proved
in [1] based on [2]) for weak Byzantine resilience that we introduce and require from
GARs in our main paper (Section 2, Definition 1). Eventhough the property of (α, f)–
Byzantine resilience is a sufficient, but not a necessary condition for (weak) Byzan-
tine resilience, it has been so far used as the defacto standard [1, 6] to guarantee
(weak) Byzantine resilience for SGD. We will therefore follow this standard and re-
quire (α, f)–Byzantine resilience from anyGAR that is plugged into AGGREGATHOR,
in particular, we will require it from MULTI-KRUM. The theoretical analysis done
in [3] guarantees that BULYAN inherits it.

Intuitively, Definition 3 states that the gradient aggregation rule GAR produces an
output vector that lives, on average (over random samples used by SGD), in the cone
of angle α around the true gradient. We simply call this the ”correct cone”.

Definition 3 ((α, f)–Byzantine resilience). Let 0 ≤ α < π/2 be any angular value,
and any integer 0 ≤ f ≤ n. Let V1, . . . , Vn be any independent identically distributed
random vectors in Rd, Vi ∼ G, with EG = g. Let B1, . . . , Bf be any random vectors
in Rd, possibly dependent on the Vi’s. An aggregation rule GAR is said to be (α, f)-
Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, vector

GAR = GAR(V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn)

satisfies (i) 〈EGAR, g〉 ≥ (1− sinα) · ‖g‖2 > 0 1 and (ii) for r = 2, 3, 4, E ‖GAR‖r
is bounded above by a linear combination of terms E ‖G‖r1 . . .E ‖G‖rn−1 with r1 +
· · ·+ rn−1 = r.

We first prove the (α, f)–Byzantine resilience of MULTI-KRUM (Lemma 1), then
prove its almost sure convergence (Lemma 2) based on that, which proves the weak
Byzantine resilience of MULTI-KRUM (Theorem 1).

1Having a scalar product that is lower bounded by this value guarantees that the GAR of MULTI-KRUM
lives in the aformentioned cone. For a visualisation of this requirement, see the ball and inner triangle of
Figure 2
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In all what follows, expectations are taken over random samples used by correct
workers to estimate the gradient, i.e the ”S” (stochasticity) that is inherent to SGD. It
is worth noting that this analysis in expectation is not an average case analysis from
the point of view of Byzantine fault tolerance. For instance, the Byzantine worker is
always assumed to follow arbitrarily bad policies and the analysis is a worst-case one.

The Byzantine resilience proof (Lemma 1) relies on the following observation:
given m ≤ n − f − 2, and in particular m = n − f − 2 2, m-Krum averages m
gradients that are all in the ”correct cone”, and a cone is a convex set, thus stable by
averaging. The resulting vectors therefore also live in that cone. The angle of the cone
will depend on a variable η(n.f) as in [1], the value of η(n.f) itself depends on m.
This is what enables us to use multi-Krum as the basis of our MULTI-KRUM, unlike [1]
where a restriction is made on m = 1.

The proof of Lemma 2 is the same as the one in [1] which itself draws on the
rather classic analysis of SGD made by L.Bottou [2]. The key concepts are (1) a global
confinement of the sequence of parameter vectors and (2) a bound on the statistical
moments of the random sequence of estimators built by the GAR of MULTI-KRUM.
As in [1,2], reasonable assumptions are made on the cost functionQ, those assumption
are not restrictive and are common in practical machine learning.

2 MULTI-KRUM: Weak Byzantine Resilience and Slow-
down

Let n be any integer greater than 2, f any integer s.t f ≤ n−2
2 and m an integer s.t

m ≤ n− f − 2. Let m̃ = n− f − 2.

Theorem 1 (Byzantine resilience and slowdown of MULTI-KRUM). Let m be any
integer s.t. m ≤ n − f − 2. (i) MULTI-KRUM has weak Byzantine resilience against
f failures. (ii) In the absence of Byzantine workers, MULTI-KRUM has a slowdown

(expressed in ratio with averaging) of Ω(
√

m̃
n ).

Proof. Proof of (i). To prove (i), we will require Lemma 1 and Lemma 2, then con-
clude by construction of MULTI-KRUM as a multi-Krum algorithm withm = n−f−2.

Lemma 1. Let V1, . . . , Vn be any independent and identically distributed random d-
dimensional vectors s.t Vi ∼ G, with EG = g and E ‖G− g‖2 = dσ2. LetB1, . . . , Bf
be any f random vectors, possibly dependent on the Vi’s. If 2f+2 < n and η(n, f)

√
d·

σ < ‖g‖, where

η(n, f) =
def

√
2

(
n− f +

f ·m+ f2 · (m+ 1)

m

)
,

2The slowdown question is an incentive to take the highest value of m among those that satisfy Byzantine
resilience, in this case m̃.
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then the GAR function of MULTI-KRUM is (α, f)-Byzantine resilient where 0 ≤ α <
π/2 is defined by

sinα =
η(n, f) ·

√
d · σ

‖g‖
.

Proof. Without loss of generality, we assume that the Byzantine vectors B1, . . . , Bf
occupy the last f positions in the list of arguments of MULTI-KRUM, i.e., MULTI-KRUM =
MULTI-KRUM(V1, . . . , Vn−f , B1, . . . , Bf ). An index is correct if it refers to a vector
among V1, . . . , Vn−f . An index is Byzantine if it refers to a vector among B1, . . . , Bf .
For each index (correct or Byzantine) i, we denote by δc(i) (resp. δb(i)) the number
of correct (resp. Byzantine) indices j such that i → j (the notation we introduced
in Section 3 when defining MULTI-KRUM), i.e the number of workers, among the m
neighbors of i that are correct (resp. Byzantine). We have

δc(i)+δb(i) = m

n− 2f − 2 ≤δc(i) ≤ m
δb(i) ≤ f.

We focus first on the condition (i) of (α, f)-Byzantine resilience. We determine an
upper bound on the squared distance ‖EMULTI-KRUM−g‖2. Note that, for any correct
j, EVj = g. We denote by i∗ the index of the worst scoring among the m vectors
chosen by the MULTI-KRUM function, i.e one that ranks with the mth smallest score
in Equation 5 of the main paper (Section 3).

‖EMULTI-KRUM − g‖2 ≤

∥∥∥∥∥∥E
MULTI-KRUM − 1

δc(i∗)

∑
i∗→ correct j

Vj

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥MULTI-KRUM − 1

δc(i∗)

∑
i∗→ correct j

Vj

∥∥∥∥∥∥
2

(Jensen inequality)

≤
∑

correct i

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

I(i∗ = i)

+
∑
byz k

E

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

I(i∗ = k)

where I denotes the indicator function3. We examine the case i∗ = i for some correct
index i.∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

δc(i)

∑
i→ correct j

Vi − Vj

∥∥∥∥∥∥
2

3I(P ) equals 1 if the predicate P is true, and 0 otherwise.
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≤ 1

δc(i)

∑
i→ correct j

‖Vi − Vj‖2 (Jensen inequality)

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(i)

∑
i→ correct j

E ‖Vi − Vj‖2

≤ 2dσ2.

We now examine the case i∗ = k for some Byzantine index k. The fact that k mini-
mizes the score implies that for all correct indices i∑
k→ correct j

‖Bk − Vj‖2+
∑

k→ byz l

‖Bk −Bl‖2 ≤
∑

i→ correct j

‖Vi − Vj‖2+
∑

i→ byz l

‖Vi −Bl‖2 .

Then, for all correct indices i∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
k→ correct j

‖Bk − Vj‖2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
1

δc(k)

∑
i→ byz l

‖Vi −Bl‖2︸ ︷︷ ︸
D2(i)

.

We focus on the term D2(i). Each correct process i has m neighbors, and f + 1
non-neighbors. Thus there exists a correct worker ζ(i) which is farther from i than
any of the neighbors of i. In particular, for each Byzantine index l such that i → l,
‖Vi −Bl‖2 ≤

∥∥Vi − Vζ(i)∥∥2. Whence∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
δb(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2

E

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ δc(i)

δc(k)
· 2dσ2 +

δb(i)

δc(k)

∑
correct j 6=i

E ‖Vi − Vj‖2 I(ζ(i) = j)

≤
(
δc(i)

δc(k)
·+ δb(i)

δc(k)
(m+ 1)

)
2dσ2

≤
(

m

n− 2f − 2
+

f

n− 2f − 2
· (m+ 1)

)
2dσ2.

Putting everything back together, we obtain

‖EMULTI-KRUM − g‖2 ≤ (n− f)2dσ2 + f ·
(

m

n− 2f − 2
+

f

n− 2f − 2
· (m+ 1)

)
2dσ2

≤ 2

(
n− f +

f ·m+ f2 · (m+ 1)

n− 2f − 2

)
︸ ︷︷ ︸

η2(n,f)

dσ2.
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By assumption, η(n, f)
√
dσ < ‖g‖, i.e., EMULTI-KRUM belongs to a ball centered at

g with radius η(n, f) ·
√
d · σ. This implies

〈EMULTI-KRUM, g〉 ≥
(
‖g‖ − η(n, f) ·

√
d · σ

)
· ‖g‖ = (1− sinα) · ‖g‖2.

To sum up, condition (i) of the (α, f)-Byzantine resilience property holds. We now
focus on condition (ii).

E‖MULTI-KRUM‖r =
∑

correct i

E ‖Vi‖r I(i∗ = i) +
∑
byz k

E ‖Bk‖r I(i∗ = k)

≤ (n− f)E ‖G‖r +
∑
byz k

E ‖Bk‖r I(i∗ = k).

Denoting by C a generic constant, when i∗ = k, we have for all correct indices i∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥ ≤
√√√√ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
δb(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2

≤ C ·

√ 1

δc(k)
·
∑

i→correct j

‖Vi − Vj‖+

√
δb(i)

δc(k)
·
∥∥Vi − Vζ(i)∥∥


≤ C ·

∑
correct j

‖Vj‖ (triangular inequality).

The second inequality comes from the equivalence of norms in finite dimension. Now

‖Bk‖ ≤

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥
≤ C ·

∑
correct j

‖Vj‖

‖Bk‖r ≤ C ·
∑

r1+···+rn−f=r

‖V1‖r1 · · · ‖Vn−f‖rn−f .

Since the Vi’s are independent, we finally obtain that E ‖MULTI-KRUM‖r is bounded
above by a linear combination of terms of the form E ‖V1‖r1 · · ·E ‖Vn−f‖rn−f =
E ‖G‖r1 · · ·E ‖G‖rn−f with r1+· · ·+rn−f = r. This completes the proof of condition
(ii).

Lemma 2. Assume that (i) the cost function Q is three times differentiable with con-
tinuous derivatives, and is non-negative, Q(x) ≥ 0; (ii) the learning rates satisfy∑
t γt =∞ and

∑
t γ

2
t <∞; (iii) the gradient estimator satisfies EG(x, ξ) = ∇Q(x)
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and ∀r ∈ {2, . . . , 4}, E‖G(x, ξ)‖r ≤ Ar + Br‖x‖r for some constants Ar, Br; (iv)
there exists a constant 0 ≤ α < π/2 such that for all x

η(n, f) ·
√
d · σ(x) ≤ ‖∇Q(x)‖ · sinα;

(v) finally, beyond a certain horizon, ‖x‖2 ≥ D, there exist ε > 0 and 0 ≤ β < π/2−α
such that

‖∇Q(x)‖ ≥ ε > 0

〈x,∇Q(x)〉
‖x‖ · ‖∇Q(x)‖

≥ cosβ.

Then the sequence of gradients ∇Q(xt) converges almost surely to zero.

Proof. For the sake of simplicity, we write MULTI-KRUMt = MULTI-KRUM(V t1 , . . . , V
t
n).

Before proving the main claim of the proposition, we first show that the sequence xt is
almost surely globally confined within the region ‖x‖2 ≤ D.

(Global confinement). Let ut = φ(‖xt‖2) where

φ(a) =

{
0 if a < D

(a−D)2 otherwise

Note that
φ(b)− φ(a) ≤ (b− a)φ′(a) + (b− a)2. (1)

This becomes an equality when a, b ≥ D. Applying this inequality to ut+1− ut yields

ut+1 − ut ≤
(
−2γt〈xt,MULTI-KRUMt〉+ γ2t ‖MULTI-KRUMt‖2

)
· φ′(‖xt‖2)

+ 4γ2t 〈xt,MULTI-KRUMt〉2 − 4γ3t 〈xt,MULTI-KRUMt〉‖MULTI-KRUMt‖2 + γ4t ‖MULTI-KRUMt‖4

≤ −2γt〈xt,MULTI-KRUMt〉φ′(‖xt‖2) + γ2t ‖MULTI-KRUMt‖2φ′(‖xt‖2)

+ 4γ2t ‖xt‖2‖MULTI-KRUMt‖2 + 4γ3t ‖xt‖‖MULTI-KRUMt‖3 + γ4t ‖MULTI-KRUMt‖4.

Let Pt denote the σ-algebra encoding all the information up to round t. Taking the
conditional expectation with respect to Pt yields

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EMULTI-KRUMt〉+ γ2t E
(
‖MULTI-KRUMt‖2

)
φ′(‖xt‖2)

+ 4γ2t ‖xt‖2E
(
‖MULTI-KRUMt‖2

)
+ 4γ3t ‖xt‖E

(
‖MULTI-KRUMt‖3

)
+ γ4t E

(
‖MULTI-KRUMt‖4

)
.

Thanks to condition (ii) of (α, f)-Byzantine resilience, and the assumption on the first
four moments of G, there exist positive constants A0, B0 such that

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EMULTI-KRUMt〉φ′(‖xt‖2) + γ2t
(
A0 +B0‖xt‖4

)
.

Thus, there exist positive constant A,B such that

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EMULTI-KRUMt〉φ′(‖xt‖2) + γ2t (A+B · ut) .

8



When ‖xt‖2 < D, the first term of the right hand side is null because φ′(‖xt‖2) = 0.
When ‖xt‖2 ≥ D, this first term is negative because (see Figure 2)

〈xt,EMULTI-KRUMt〉 ≥ ‖xt‖ · ‖EMULTI-KRUMt‖ · cos(α+ β) > 0.

Hence
E (ut+1 − ut|Pt) ≤ γ2t (A+B · ut) .

We define two auxiliary sequences

µt =

t∏
i=1

1

1− γ2iB
−−−→
t→∞

µ∞

u′t = µtut.

Note that the sequence µt converges because
∑
t γ

2
t <∞. Then

E
(
u′t+1 − u′t|Pt

)
≤ γ2t µtA.

Consider the indicator of the positive variations of the left-hand side

χt =

{
1 if E

(
u′t+1 − u′t|Pt

)
> 0

0 otherwise

Then
E
(
χt · (u′t+1 − u′t)

)
≤ E

(
χt · E

(
u′t+1 − u′t|Pt

))
≤ γ2t µtA.

The right-hand side of the previous inequality is the summand of a convergent series.
By the quasi-martingale convergence theorem [5], this shows that the sequence u′t con-
verges almost surely, which in turn shows that the sequence ut converges almost surely,
ut → u∞ ≥ 0.

Let us assume that u∞ > 0. When t is large enough, this implies that ‖xt‖2 and
‖xt+1‖2 are greater than D. Inequality 1 becomes an equality, which implies that the
following infinite sum converges almost surely

∞∑
t=1

γt〈xt,EMULTI-KRUMt〉φ′(‖xt‖2) <∞.

Note that the sequence φ′(‖xt‖2) converges to a positive value. In the region ‖xt‖2 >
D, we have

〈xt,EMULTI-KRUMt〉 ≥
√
D · ‖EMULTI-KRUMt‖ · cos(α+ β)

≥
√
D ·
(
‖∇Q(xt)‖ − η(n, f) ·

√
d · σ(xt)

)
· cos(α+ β)

≥
√
D · ε · (1− sinα) · cos(α+ β) > 0.

This contradicts the fact that
∑∞
t=1 γt = ∞. Therefore, the sequence ut converges

to zero. This convergence implies that the sequence ‖xt‖2 is bounded, i.e., the vec-
tor xt is confined in a bounded region containing the origin. As a consequence, any
continuous function of xt is also bounded, such as, e.g., ‖xt‖2, E ‖G(xt, ξ)‖2 and all
the derivatives of the cost function Q(xt). In the sequel, positive constants K1,K2,
etc. . . are introduced whenever such a bound is used.
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(Convergence). We proceed to show that the gradient∇Q(xt) converges almost surely
to zero. We define

ht = Q(xt).

Using a first-order Taylor expansion and bounding the second derivative with K1, we
obtain

|ht+1 − ht + 2γt〈MULTI-KRUMt,∇Q(xt)〉| ≤ γ2t ‖MULTI-KRUMt‖2K1 a.s.

Therefore

E (ht+1 − ht|Pt) ≤ −2γt〈EMULTI-KRUMt,∇Q(xt)〉+γ2t E
(
‖MULTI-KRUMt‖2|Pt

)
K1.

(2)
By the properties of (α, f)-Byzantine resiliency, this implies

E (ht+1 − ht|Pt) ≤ γ2tK2K1,

which in turn implies that the positive variations of ht are also bounded

E (χt · (ht+1 − ht)) ≤ γ2tK2K1.

The right-hand side is the summand of a convergent infinite sum. By the quasi-martingale
convergence theorem, the sequence ht converges almost surely, Q(xt)→ Q∞.

Taking the expectation of Inequality 2, and summing on t = 1, . . . ,∞, the conver-
gence of Q(xt) implies that

∞∑
t=1

γt〈EMULTI-KRUMt,∇Q(xt)〉 <∞ a.s.

We now define
ρt = ‖∇Q(xt)‖2 .

Using a Taylor expansion, as demonstrated for the variations of ht, we obtain

ρt+1−ρt ≤ −2γt〈MULTI-KRUMt,
(
∇2Q(xt)

)
·∇Q(xt)〉+γ2t ‖MULTI-KRUMt‖2K3 a.s.

Taking the conditional expectation, and bounding the second derivatives by K4,

E (ρt+1 − ρt|Pt) ≤ 2γt〈EMULTI-KRUMt,∇Q(xt)〉K4 + γ2tK2K3.

The positive expected variations of ρt are bounded

E (χt · (ρt+1 − ρt)) ≤ 2γtE〈EMULTI-KRUMt,∇Q(xt)〉K4 + γ2tK2K3.

The two terms on the right-hand side are the summands of convergent infinite series.
By the quasi-martingale convergence theorem, this shows that ρt converges almost
surely.

We have

〈EMULTI-KRUMt,∇Q(xt)〉 ≥
(
‖∇Q(xt)‖ − η(n, f) ·

√
d · σ(xt)

)
· ‖∇Q(xt)‖
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Figure 2: Condition on the angles between xt, ∇Q(xt) and the the GAR of
MULTI-KRUM vector EMULTI-KRUMt, in the region ‖xt‖2 > D.

≥ (1− sinα)︸ ︷︷ ︸
>0

·ρt.

This implies that the following infinite series converge almost surely

∞∑
t=1

γt · ρt <∞.

Since ρt converges almost surely, and the series
∑∞
t=1 γt = ∞ diverges, we conclude

that the sequence ‖∇Q(xt)‖ converges almost surely to zero.

We conclude the proof of (i) by recalling the definition of MULTI-KRUM, as the
instance of m−Krum with m = n− f − 2.

Proof of (ii). (ii) is a consequence of the fact that m-Krum is the average of m es-
timators of the gradient. In the absence of Byzantine workers, all those estimators
will not only be from the ”correct cone”, but from correct workers (Byzantine workers
can also be in the correct cone, but in this case there are none). As SGD converges
in O( 1√

m
), where m is the number of used estimators of the gradient, the slowdown

result follows.

3 AGGREGATHOR: Strong Byzantine Resilience and
Slowdown

Let n be any integer greater than 2, f any integer s.t f ≤ n−3
4 and m an integer s.t

m ≤ n− 2f − 2. Let m̃ = n− 2f − 2.

Theorem 2 (Byzantine resilience and slowdown of AGGREGATHOR). (i) AGGREGATHOR
provides strong Byzantine resilience against f failures. (ii) In the absence of Byzan-
tine workers, AGGREGATHOR has a slowdown (expressed in ratio with averaging) of

Ω(
√

m̃
n ).
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Proof. If the number of iterations over MULTI-KRUM is n − 2f , then the leeway,
defined by the coordinate-wise distance between the output of BULYAN and a correct
gradient is upper bounded by O( 1√

d
). This is due to the fact that BULYAN relies on

a component-wise median, that, as proven in [3] guarantees this bound. The proof is
then a direct consequence of Theorem 1 and the properties of Bulyan [3]
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