
AGGREGATHOR: Byzantine Machine Learning
via Robust Gradient Aggregation

Georgios Damaskinos 1 El Mahdi El Mhamdi 1 Rachid Guerraoui 1 Arsany Guirguis 1 Sébastien Rouault 1

ABSTRACT
We present AGGREGATHOR, a framework that implements state-of-the-art robust (Byzantine-resilient) dis-
tributed stochastic gradient descent. Following the standard parameter server model, we assume that a minority
of worker machines can be controlled by an adversary and behave arbitrarily. Such a setting has been theo-
retically studied with several of the existing approaches using a robust aggregation of the workers’ gradient
estimations. Yet, the question is whether a Byzantine-resilient aggregation can leverage more workers to speed-
up learning. We answer this theoretical question, and implement these state-of-the-art theoretical approaches on
AGGREGATHOR, to assess their practical costs. We built AGGREGATHOR around TensorFlow and introduce
modifications for vanilla TensorFlow towards making it usable in an actual Byzantine setting. AGGREGATHOR
also permits the use of unreliable gradient transfer over UDP to provide further speed-up (without losing the ac-
curacy) over the native communication protocols (TCP-based) of TensorFlow in saturated networks. We quantify
the overhead of Byzantine resilience of AGGREGATHOR to 19% and 43% (to ensure weak and strong Byzantine
resilience respectively) compared to vanilla TensorFlow.

1 INTRODUCTION

Billions of Internet users share new data (e.g., photos,
videos, posts) every day. The amount of data generated
keeps increasing at a continuous rate and has been a won-
derful opportunity for machine learning (ML) algorithms.
Yet, precisely because of the huge amount of data avail-
able, these algorithms require immense demands of com-
puting resources in order to train the ML model and pro-
vide accurate predictions. As a result, most ML algorithms
today are distributed (Jaggi et al., 2014; Recht et al., 2011;
Dean et al., 2012; Abadi et al., 2016a; Chilimbi et al., 2014;
Li et al., 2014; Meng et al., 2016). Typically, a (parame-
ter) server coordinates the distribution of the training tasks
among a large set of worker nodes. The parameter server
aggregates the responses of the workers (e.g., average the
gradients) and updates a global view of the model.

Besides scaling, another motivation for distributed ML
schemes is privacy. The workers could be user machines
keeping their data locally and collaborating through a pa-
rameter server to achieve some global machine learning
task (Abadi et al., 2016b; Shokri & Shmatikov, 2015).

The multiplicity of workers increases however the possibil-
ity of failures. Workers can be subject to software bugs and

*Equal contribution 1EPFL. Correspondence to: FirstName
LastName(without spaces) <firstname.lastname@epfl.ch>.

Proceedings of the 1 st SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

hardware faults1 (Gunawi et al., 2018). They can access
corrupt datasets or even be hijacked by an adversary. Such
failures can be fatal to most modern ML schemes, even if
only a single worker is faulty. Ideally, distributed ML ap-
plications should tolerate Byzantine failures, encapsulating
all possible malfunctions. These failures include poisoning
attacks (Biggio & Laskov, 2012), in the parlance of adver-
sarial machine learning (Papernot et al., 2017; Biggio &
Roli, 2017; Biggio & Laskov, 2012).

Traditionally, Byzantine resilience of a distributed ser-
vice is achieved by using Byzantine-resilient state machine
replication techniques (Schneider, 1990; Castro et al.,
1999; Sen et al., 2010; Cowling et al., 2006; Chen et al.,
2015). Whereas this approach looks feasible for the sin-
gle and deterministic server, applying it to workers appears
less realistic. Indeed, the workers parallelize, i.e., share the
computational-heavy part of Stochastic Gradient Descent
(SGD)2: the gradient estimation. Having them compute
different gradients (inherently non-deterministic) to agree
on only one of their estimations, would imply losing a sig-
nificant amount of the computations made, i.e., losing the
very purpose of the distribution of the estimation. This
would merely lead to additional synchronization and com-
munication costs compared to non-distributing SGD.

Some theoretical approaches have been recently proposed

1The parameter server is trusted in this paper.
2We focus on SGD as the workhorse optimization algorithm.

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

to address Byzantine-resilience without replicating the
workers (Blanchard et al., 2017; Diakonikolas et al., 2017).
In short, the idea is to use more sophisticated forms of ag-
gregation3 (e.g. median) than simple averaging. Despite
their provable guarantees, most of these algorithms only
ensure a weak form of resilience against Byzantine fail-
ures. These algorithms indeed ensure convergence to some
state, but this final state could be heavily influenced by the
Byzantine workers (El Mhamdi et al., 2018). For most
critical distributed ML applications, a stronger form of
Byzantine resilience is desirable, where SGD would con-
verge to a state that could have been attained in a non-
Byzantine environment. Draco (Chen et al., 2018) and
BULYAN (El Mhamdi et al., 2018) are the only propos-
als that guarantee strong Byzantine resilience. On the
one hand, Draco requires (a) computing several gradi-
ents per worker and step (instead of one), and (b) strong
assumptions as we discuss in §5. On the other hand,
BULYAN internally iterates over a weak Byzantine GAR
(e.g. Krum (Blanchard et al., 2017)), which is experimen-
tally shown by its authors to be sub-optimal. Apart from
Draco, none of the Byzantine-resilient approaches has been
implemented and tested in a realistic distributed ML envi-
ronment to assess the scalability.

We present AGGREGATHOR, a light and fast framework
that brings Byzantine resilience to distributed machine
learning. Due to its popularity and wide adoption, we
build AGGREGATHOR around TensorFlow. Our frame-
work can thus be used to distribute, in a secure way,
the training of any ML model developed for TensorFlow.
AGGREGATHOR simplifies the experimentation on large
and possibly heterogeneous server farms by providing au-
tomatic, policy-based device selection and cluster-wide al-
location in TensorFlow. Following the TensorFlow design,
any worker (including Byzantine ones) can alter the graph
and execute code on any other node. We provide a code
patch for TensorFlow that prohibits such a behavior to en-
sure Byzantine resilience. AGGREGATHOR allows for both
levels of robustness: weak and strong resilience through
MULTI-KRUM4 and BULYAN respectively.

MULTI-KRUM assigns a score (based on a sum of dis-
tances with the closest neighbors) to each gradient a worker
submits to the server, and then returns the average of the
smallest scoring gradients set (§2.3). We provide a fast,
memory scarce implementation of MULTI-KRUM by fully
parallelizing each of the computational-heavy steps. We
formally prove the Byzantine resilience, convergence and
slowdown of MULTI-KRUM.

3We refer to the various forms of gradient aggregation as Gra-
dient Aggregation Rules (GAR).

4MULTI-KRUM was first discussed (Blanchard et al., 2017)
without any theoretical guarantees for Byzantine resilience.

BULYAN robustly aggregates n vectors by iterating sev-
eral times over a second (underlying) Byzantine-resilient
GAR. In each loop, BULYAN extracts the gradient(s) se-
lected by the underlying GAR, computes the closest val-
ues to the coordinate-wise median of the extracted gradi-
ent(s) and finally returns the coordinate-wise average of
these values. We optimize our implementation of BULYAN
given MULTI-KRUM as the underlying GAR. We acceler-
ate the execution by removing all the redundant computa-
tions: MULTI-KRUM performs the distance computations
only on the first iteration of BULYAN; the next iterations
only update the scores. We also parallelize the loops over
the gradient coordinates (e.g. median coordinate-wise). We
reduce the memory cost by allocating space only for one
iteration of MULTI-KRUM along with the intermediate se-
lected gradients. Both of our implementations support non-
finite (i.e., ±Infinity and NaN) coordinates, which is a cru-
cial feature when facing actual malicious workers.

We evaluate and compare the performance of
AGGREGATHOR against vanilla TensorFlow when no
attacks occur. We first deploy both systems on top of the
default, reliable communication protocol and quantify the
respective overhead of MULTI-KRUM and BULYAN, i.e.,
the cost of weak and strong Byzantine resilience, to 19%
and 43% respectively. We then consider an unreliable
UDP-based communication channel leading to packet
losses, to which TensorFlow is intolerant. We provide the
necessary TensorFlow modifications to accommodate this
lossy scheme. We show that AGGREGATHOR can also
tolerate unreliable communication with a speedup gain of
six times against vanilla TensorFlow in saturated networks.
We also compare AGGREGATHOR with Draco and show a
performance gain in terms of throughput and convergence
rate.

The rest of the paper is structured as follows. We recall
some preliminary ML concepts and introduce weak and
strong Byzantine resilience for distributed gradient descent
in §2. We describe the design of AGGREGATHOR in §3 and
empirically evaluate its effectiveness in §4. We review the
related work in §5 and conclude our paper in §6.

The latest version of AGGREGATHOR is publicly available
(MIT license) on GitHub: LPD-EPFL/AggregaThor.

2 BACKGROUND AND PRELIMINARIES

2.1 Stochastic Gradient Descent

For illustration purposes but without loss of generality, we
consider supervised deep learning for image classification.
The learning task consists in making accurate predictions
for the labels of each data instance ξi by using a convolu-
tional neural network (CNN); we denote the d parameters
(model) of the CNN by x. Each data instance has a set of

https://github.com/LPD-EPFL/AggregaThor

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

features (image pixels), and a set of labels (e.g., {cat, per-
son}). The CNN is trained with the popular backpropaga-
tion algorithm based on SGD. Specifically, SGD addresses
the following optimization problem.

min
x∈Rd

Q(x) , EξF (x; ξ) (1)

where ξ is a random variable representing a total of B data
instances and F (x; ξ) is the loss function. The function
Q(x) is smooth but not convex.

SGD computes the gradient (G(x, ξ) , ∇F (x; ξ)) and
then updates the model parameters (x) in a direction op-
posite to that of the gradient (descent). The vanilla SGD
update rule given a sequence of learning rates {γk} at any
given step5 is the following:

x(k+1) = x(k) − γk ·G(x(k), ξ)) (2)

The popularity of SGD stems from its ability to employ
noisy approximations of the actual gradient. In a dis-
tributed setup, SGD employs a mini-batch of b < B train-
ing instances for the gradient computation:

G(x, ξ) =

b∑
i=1

G(x, ξi) (3)

The size of the mini-batch (b) affects the amount of paral-
lelism (Equation 3) that modern computing clusters (multi-
GPU etc.) largely benefit from. Scaling the mini-batch size
to exploit additional parallelism requires however a non-
trivial selection of the sequence of learning rates (Goyal
et al., 2017). A very important assumption for the conver-
gence properties of SGD is that each gradient is an unbi-
ased estimation of the actual gradient, which is typically
ensured through uniform random sampling, i.e., gradients
that are on expectation equal to the actual gradient.

2.2 Byzantine Resilience

SGD has been both theoretically and empirically proven to
not be resilient against Byzantine worker behavior (Blan-
chard et al., 2017). A Byzantine worker can propose a gra-
dient that can completely ruin the training procedure.

Weak Byzantine resilience. A very recent line of theo-
retical research has addressed the problem of Byzantine-
resilient SGD (Blanchard et al., 2017; El Mhamdi et al.,
2018; Su, 2017; Xie et al., 2018; Yin et al., 2018). These
SGD variants all aggregate the gradients obtained from the
workers before deriving the final gradient. Essentially, they
compute statistics (e.g. median, quantiles, principal com-
ponent analysis) over the set of aggregated gradients to de-
rive the final gradient. Basically, the update rule (Equa-
tion 2) for n workers becomes:

x(k+1) =x(k)−γk F
(
G1(x(k), ξ1). . .Gn(x(k), ξn)

)
(4)

5A step denotes an update in the model parameters.

where F denotes the gradient aggregation rule (GAR), and
Gi(x

(k), ξi) denotes the gradient estimate of worker i, us-
ing its own randomly drawn mini-batch ξi and the global
model x at epoch k.

In the context of non-convex optimization, it is generally
hopeless to try to minimize Q(x). Instead, what can be
proven is that the sequence of parameter vectors converges
to a region around some x∗ where ∇Q(x∗) = 0, i.e, a flat
region of the loss function (Bottou, 1998). Any gradient
aggregation rule, F , which satisfies this convergence prop-
erty despite the presence of f Byzantine workers, among
the total of n workers, is called weakly Byzantine-resilient.

Strong Byzantine resilience. In high dimensional spaces
(i.e., d � 1), and with a highly non-convex loss function
(which is the case in modern machine learning (Haykin,
2009; Mallat, 2016)), weak Byzantine resilience may lead
to models with poor performance in terms of predic-
tion accuracy, as a Byzantine worker can fool a prov-
ably converging SGD rule by leveraging a dimensional lee-
way (El Mhamdi et al., 2018). More precisely, this worker
can make the system converge, as guaranteed by its design-
ers, but to a state with poor (as compared to the maximum
possible one in a non-Byzantine environment) prediction
accuracy.6

We define strong Byzantine resilience as the ability for a
GAR, in addition to being weakly Byzantine-resilient, to
select gradients that are (in each coordinate) in a distance
of at most 1√

d
from some correct gradient, despite the pres-

ence of f Byzantine workers among the total n workers.
A more detailed analysis of strong Byzantine resilience is
available (El-Mhamdi & Guerraoui, 2019).

Attacking a non-Byzantine resilient GARs such as averag-
ing is easy. Attacking a GAR that ensures weak Byzantine
resilience requires a powerful adversary, i.e., at least able to
carry out the attack presented in (El Mhamdi et al., 2018).
Our threat model (§3.1), both states sufficient requirements
for such an adversary and allows its existence.

2.3 Algorithms

AGGREGATHOR relies on two algorithmic components:
MULTI-KRUM (Blanchard et al., 2017) and BULYAN
(El Mhamdi et al., 2018). The former rule requires that
n ≥ 2f + 3 and the second requires that n ≥ 4f + 3.

6 The intuition behind this issue relates to the so-called curse
of dimensionality, a fundamental problem in learning: a square of
unit 1 on each side has a diagonal of length

√
2. In dimension 3,

the cube of unit 1 has a diagonal of length
√
3. In dimension d,

the diagonal is of length
√
d. Given d � 1, points that differ by

a distance of at most 1 in each direction end up being in a huge
distance from each other.

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

Intuitively, the goal of MULTI-KRUM is to select the gra-
dients that deviate less from the “majority” based on their
relative distances. Given gradients G1 . . .Gn proposed by
workers 1 to n respectively, MULTI-KRUM selects the m
gradients with the smallest sum of scores (i.e., L2 norm
from the other gradients) as follows:

(m) arg min
i∈{1,...,n}

∑
i→j
‖Gi −Gj‖2 (5)

where given a function X(i), (m) arg min(X(i)) denotes
the indexes i with the m smallest X(i) values, and i → j
means that Gj is among the n − f − 2 closest gradients
to Gi. BULYAN in turn takes the aforementioned m vec-
tors, computes their coordinate-wise median and produces
a gradient which coordinates are the average of the m− 2f
closest values to the median.

In (Blanchard et al., 2017), it was proven that Krum
(i.e., MULTI-KRUM for m = 1) is weakly Byzantine-
resilient. Yet, choosing m = 1 hampers the speed of
convergence (Chen et al., 2018; Alistarh et al., 2018).
MULTI-KRUM becomes practically interesting when we
can chose the highest possible value for m to leverage all
the workers (in the limit of no Byzantine workers, this value
should be n).

In our Appendix, we answer the open question of Byzan-
tine resilience for m > 1 and we prove that for n ≥ 2f + 3
and any integer m s.t. m ≤ n− f − 2: (1) MULTI-KRUM
ensures weak Byzantine resilience against f failures, and
(2) BULYAN ensures strong Byzantine resilience against f
failures. As a consequence, AGGREGATHOR can safely be
used with any value between 1 ≤ m ≤ n− f − 2, and not
only m = 1.

3 DESIGN OF AGGREGATHOR

Our goal is two-fold: First we target faster development
and testing of robust, distributed training in TensorFlow;
that essentially boils down to providing ease-of-use and
modularity. Second we want to enable the deployment
of Byzantine-resilient learning algorithms outside the aca-
demic environment.

3.1 Threat model and parameter server

We assume the standard synchronous parameter server
model (Li et al., 2014), with the only dissimilarity being
that f < n of the n workers are controlled by an adver-
sary. We refer to these workers as Byzantine. The goal of
the adversary is to impair the learning, by making it con-
verge to a state different from the one that would have been
obtained if no adversary had stymied the learning process.

We assume the adversary, in the instance of the f coop-
erating Byzantine workers, has unbounded computational

power, and arbitrarily fast communication channels be-
tween its f workers and with the parameter server. We
assume an asynchronous network (see §3.3) and we as-
sume that even Byzantine workers send gradients at each
step7. We assume the adversary has access to the full train-
ing dataset B, and the gradients computed by each correct
worker.

Finally, we assume, as in (El Mhamdi et al., 2018; Blan-
chard et al., 2017; Xie et al., 2018; Yin et al., 2018), that the
parameter server is correct. This server could be reliable
and implemented on a trustworthy machine, unlike workers
that could be remote user machines in the wild. This server
could also be implemented by using standard Byzantine-
resilient state machine replication (Schneider, 1990; Chen
et al., 2015; Castro et al., 1999).

3.2 Architecture and Byzantine resilience

AGGREGATHOR is a light framework (as shown in Fig-
ure 1) that handles the distribution of the training of a Ten-
sorFlow neural network graph over a cluster of machines.
One of our main contributions is that this distribution is
robust to Byzantine cluster nodes, in a proportion that de-
pends on the GAR used.

In TensorFlow, Byzantine resilience cannot be achieved
solely through the use of a Byzantine-resilient GAR. In-
deed, TensorFlow allows any node in the cluster to exe-
cute arbitrary operations anywhere in the cluster. A sin-
gle Byzantine worker could then continually overwrite the
shared parameters8 with arbitrary values. We overcome
this issue in two steps: (a) by patching TensorFlow to make
tf.train.Server instances belonging to the job named “ps” to
discard remote graph definitions and executions, and (b) by
using in-graph replication, where only the parameter server
(“ps”) builds the graph (Figure 2).

Pursuing our goal of ease-of-use and modularity, we pro-
vide the user of our framework with two tools; a deploy
tool to deploy a cluster through SSH, and a run tool to
launch a training session on the deployed cluster. Adding a
new GAR or a new experiment boils down to (1) adding a
python script to a directory, and (2) testing this new compo-
nent; this consists in changing one or two command line pa-
rameters when calling the run tool. Cluster-wide device al-
location, specifying which operations should run on which
devices, is managed by our framework.

Byzantine resilience (using a complex GAR in our case)
comes with cost which we quantify for some settings in §4.

7The default behavior of TensorFlow is to wait indefinitely for
non-responding remote nodes, which is incompatible with asyn-
chrony and Byzantine workers (not responding on purpose).

8This is actually how the distributed example of TensorFlow
given on https://www.tensorflow.org/deploy/
distributed works: each worker node keeps overwriting the
shared parameters.

https://www.tensorflow.org/deploy/distributed
https://www.tensorflow.org/deploy/distributed

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

Experience
(= model
 + dataset)

Gradient
Aggregation
Rule (GAR)

AGGREGATHOR · Cluster management
· Optimizers

Momentum, Adam, ...
· Learning rates

Fixed, Polynomial, ...

OS (libstdc++, libcudart, libmpi, ...)

TensorFlow lossyMPI <code patch>

Figure 1. The components of AGGREGATHOR, and their layered
relations with existing components. New components have a gray
background. AGGREGATHOR acts as a light framework, that
manages the deployment and execution of a model training ses-
sion over a cluster of machines.

3.3 Communication layer

A Byzantine-resilient GAR at a high-level layer enables the
usage of a fast but unreliable communication protocol at
the low-level one. Using the vanilla TensorFlow averag-
ing does not work while employing unreliable communica-
tion, because lost or shuffled coordinates/packets (of even
one gradient) can lead to learning divergence. The most
straightforward solution to guarantee convergence in this
case, is to drop the whole gradient if at least one coor-
dinate was lost (i.e., the packet containing the coordinate
was lost). We expect that such a solution will delay con-
vergence especially in networks with high loss ratios. To
avoid dropping the whole gradient in such a case, one can
implement a variant of averaging which we call selective
averaging. In this GAR, the lower layer replaces the lost
coordinates with a special value (e.g. NaN) while the GAR
layer ignores these coordinates while averaging. We ex-
pect this method to be faster than the first one. A third
solution would be simply to use AGGREGATHOR on top,
and put random values at the lost coordinates. Not car-
ing about what happens at the low-level layer would not
be harmful, as the Byzantine-resilient GAR on top guaran-
tees convergence (as long as the unreliable communication
is deployed only at (up to) f links). Comparing the last
two proposed solutions, it is worth noting that using the
selective averaging model requires a special care for out-
of-order packets. A sequence number should define the
correct position of each packet so that the received packets
are correctly put in their positions (in the gradient). Other-
wise, learning convergence is not guaranteed. However, us-
ing AGGREGATHOR does not require sending the sequence
number because this GAR does not have any assumptions
on what is delivered at the lower-level layers.

TensorFlow does not support UDP and hence, we modify
its underlying networking layer to support a fast but unre-
liable communication protocol, which we call lossyMPI,
alongside those already supported, e.g., gRPC, RDMA,

/job:ps/task:0 /job:eval/task:0

/job:workers/task:0 /job:workers/task:m-1

Variable x

Variable y

Variable z

In
fe

re
nc

e

Lo
ss

G
ra

di
en

t

worker 0

In
fe

re
nc

e

Lo
ss

G
ra

di
en

t

worker 1

te
st

 se
t

tr
ai

n
se

t

tr
ai

n
se

t

G
ra

di
en

t

Lo
ss

In
fe

re
nc

e

worker n-1

G
ra

di
en

t

Lo
ss

In
fe

re
nc

e

worker n-2

Inference

Accuracy

...

Aggregation
...

Apply grad.

Figure 2. High-level components and execution graph. Each gray
rectangle represents a group of tf.Operation, and each plain
arrow represents a tf.Tensor. The sub-graph between the gra-
dients to the variables corresponds to Equation 4. For readability
purpose, the tensors from the variables to each “Inference” and
“Gradient” groups of operations have not been represented.

MPI. LossyMPI is devised by modifying the MPI commu-
nication endpoints to employ UDP sockets. At the receiv-
ing endpoint, we implement the aforementioned GARs to
recoup the lost coordinates and guarantee convergence. To
use UDP, we also implement a reliability scheme for meta-
data (accompanying gradients) and packets ordering.

4 EVALUATION OF AGGREGATHOR

We evaluate the performance of AGGREGATHOR following
a rather standard methodology in the distributed ML litera-
ture. In particular, we consider the image classification task
due to its wide adoption as a benchmark for distributed ML
literature (Chilimbi et al., 2014; Abadi et al., 2016a; Zhang
et al., 2017).

4.1 Evaluation Setup

We present the details of the configuration, benchmarks,
and methods we employ for our evaluation. For clarity and
for the rest of this section, we will refer with MULTI-KRUM
to the deployment of AGGREGATHOR with the GAR be-
ing MULTI-KRUM and with BULYAN to the deployment of
AGGREGATHOR with the GAR being BULYAN.

Platform. Our experimental platform is Grid5000 (g5k).
Unless stated otherwise, we employ 20 nodes from the
same cluster, each having 2 CPU (Intel Xeon E5-2630)
with 8 cores, 128 GiB RAM and 10 Gbps Ethernet.

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

Dataset. We use the CIFAR-10 dataset (cif), a widely
used dataset in image classification (Srivastava et al., 2014;
Zhang et al., 2017), which consists of 60,000 colour im-
ages in 10 classes. We perform min-max scaling as a pre-
processing step for the input features of the dataset. We em-
ploy a convolutional neural network with a total of 1.75M
parameters as shown in Table 1. We have implemented the
same model with PyTorch to be compatible with Draco.

Table 1. CNN Model parameters.
Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3

Kernel size
Strides 32×32×3

5×5×64
1×1

3×3
2×2

5×5×64
1×1

3×3
2×2 384 192 10

Evaluation metrics. We evaluate the performance of
AGGREGATHOR using the following standard metrics.

Throughput. This metric measures the total number of gra-
dients that the aggregator receives per second. The factors
that affect the throughput is the time to compute a gradient,
the communication delays (worker receives the model and
sends the gradient) and the idle time of each worker. The
idle time is determined by the overhead of the aggregation
at the server. While the server performs the aggregation
and the descent, the workers wait (synchronous training).

Accuracy. This metric measures the top-1 cross-accuracy:
the fraction of correct predictions among all the predic-
tions, using the testing dataset (see below). We measure
accuracy both with respect to time and model updates.

Evaluation scheme. To cross-validate the performance,
we split the dataset into training and test sets. The dataset
includes 50,000 training examples and 10,000 test exam-
ples. Note that, if not stated otherwise, we employ an RM-
Sprop optimizer (Tieleman & Hinton, 2012) with a fixed
initial learning rate of 10−3 and a mini-batch size of 100.

We split our 20 nodes into n = 19 workers and 1 parameter
server. If not stated otherwise, we set f = 4 given that
BULYAN requires n ≥ 4f + 3.

We employ the best (in terms of convergence rate) com-
bination of other hyper-parameters for the deployment of
Draco. For example, we use the repetition method because
it gives better results than the cyclic one. Also, we use the
reversed gradient adversary model with the same parame-
ters recommended by the authors and a momentum of 0.9.

4.2 Non-Byzantine Environment

In this section, we report on the performance of our frame-
work in a non-Byzantine distributed setup. Our baseline
is vanilla TensorFlow (TF) deployed with the built-in av-
eraging GAR: tf.train.SyncReplicasOptimizer. We com-
pare TF against AGGREGATHOR using (a) MULTI-KRUM,
(b) BULYAN, (c) an alternative Byzantine-resilient median-
based algorithm (Xie et al., 2018) (Median) implemented

as a new GAR in our framework, and (d) the basic gradient
averaging GAR (Average). We also report on the perfor-
mance of (e) Draco.

Overhead in terms of convergence time. In Figure 3(a),
TensorFlow reaches 50% of its final accuracy in 3 minutes
and 9 seconds, whereas MULTI-KRUM and BULYAN are
respectively 19% and 43% slower for reaching the same
accuracy. Our framework with Average leads to a 7% slow-
down compared to the baseline. The Median GAR, with a
mini-batch size of b = 250, converges as fast as the base-
line (model update-wise), while with b = 20, Median pre-
vents convergence to a model achieving baseline accuracy.

We identify two separate causes for the overhead of
AGGREGATHOR. The first is the computational over-
head of carrying out the Byzantine-resilient aggregation
rules. The second cause is the inherent variance increase
that Byzantine-resilient rules introduce compared to Av-
erage and the baseline. This is attributed to the fact
that MULTI-KRUM, BULYAN and Median only use a frac-
tion of the computed gradients; in particular Median uses
only one gradient. Increasing the variance of the gradi-
ent estimation is a cause of convergence slowdown (Bot-
tou, 1998). Since even Median converges as fast as the
baseline with b = 250, the respective slowdowns of 19%
and 43% for MULTI-KRUM and BULYAN correspond only
to the computational overhead. The practitioner using
AGGREGATHOR does not need to increase the mini-batch
size to achieve baseline final accuracy (Figure 3(d)).

Although Draco reaches the same final accuracy, the time
to reach the model’s maximal accuracy is slower than with
our TensorFlow-based system. We attribute this mainly to
the fact that Draco requires 2f + 1 times more gradients to
be computed than our system before performing a step.

We decompose the average latency per epoch to assess
the effect of the aggregation time on the overhead of
AGGREGATHOR against TensorFlow. We employ the same
setup as in Figure 3(a).

Figure 4 shows that the aggregation time accounts for 35%,
27% and 52% of run times of Median, MULTI-KRUM,
and BULYAN respectively. These ratios do not depend on
the variance of the aggregated gradients, but solely on the
gradient computation time: a larger/more complex model
would naturally make these ratios decrease (i.e., the rela-
tive cost of Byzantine resilience would decrease). See Fig-
ure 5.

Impact of f on scalability. We measure the scalability of
AGGREGATHOR with respect to TensorFlow for two mod-
els: the CNN that we use throughout the evaluation and a
significantly larger one, ResNet50. Figure 5(a) shows that
the throughput of all TensorFlow-based systems with up to

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

0 250 500 750 1000
Time (sec)

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy TF

Average
Median
Multi-Krum (f=4)
Bulyan (f=4)
Draco (f=4)

(a)

0 250 500 750 1000
Model updates

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy

(b)mini-batch size = 250

0 250 500 750 1000
Time (sec)

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy TF

Average
Median
Multi-Krum (f=4)
Bulyan (f=4)
Draco (f=4)

(c)

0 1000 2000 3000 4000 5000
Model updates

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy

(d)mini-batch size = 20

Figure 3. Overhead of AGGREGATHOR in a non-Byzantine environment.

TF Median MULTI-KRUM
(f=4)

BULYAN
(f=4)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

La
te

n
cy

 p
e
r

e
p
o
ch

 (
se

c)

Computation + communication time

Aggregation time

Figure 4. Latency breakdown.

6 workers is the same. From this point on, the larger the
number of workers, the larger the deviation between the
Byzantine-resilient algorithms and TensorFlow. The reason
behind this behavior is the fact that an increase in the num-
ber of workers introduces a larger overhead to the aggre-
gation of a Byzantine-resilient algorithm (logic to ensure
Byzantine resilience) than simple averaging. The more ex-
pensive the logic, the bigger this difference. For example,
BULYAN scales poorly for this setup. This is confirmed
in Figure 5(b) where the gradient computation is signifi-
cantly more costly than gradient aggregation. This allows
MULTI-KRUM and BULYAN to have better scalability.

Figure 5(a) confirms that the higher the declared f
the higher the throughput. This may appear counter-
intuitive (resilience against more failures provides a per-
formance benefit) but is the direct outcome of the design
of the algorithmic components of AGGREGATHOR. Since
m = n − f − 2, the higher f the fewer iterations for
BULYAN (El Mhamdi et al., 2018) and the fewer the neigh-

bors for MULTI-KRUM (Blanchard et al., 2017). Moreover,
for a larger value of f , these algorithms become more se-
lective for the gradients that will be averaged. It is however
very important to highlight that non-convex optimization is
a notably complex problem that might take advantage of
more variance to converge faster (as we discuss in our Ap-
pendix). Therefore, anticipating faster convergence for a
larger value of f does not always hold, i.e., larger through-
put does not always lead to faster convergence (Bottou,
1998). In conclusion, there exists a trade-off between the
update throughput and the quality of each update that is
partially controlled by the choice of f .

Draco is always at least one order of magnitude slower than
the TensorFlow-based systems. This low throughput lim-
its its scalability. An interesting observation here is that
changing the number of Byzantine workers does not have
a remarkable effect on the throughput. This is attributed
to the method Draco uses to tolerate Byzantine behavior
which is linear in n (Chen et al., 2018), thus the perfor-
mance is not affected by changing f .

Impact of f on convergence. We show the effect of
the choice of f in a non-Byzantine environment. Fig-
ure 6(a) shows that the larger value of f triggers a
slightly slower convergence for MULTI-KRUM and slightly
faster convergence for BULYAN. This is the direct con-
sequence of the aforementioned trade-off. The through-
put of MULTI-KRUM is boosted more than the through-
put of BULYAN for the same increase on f (from 1 to 4).
Therefore, in the case of BULYAN, the faster model updates

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

2 4 6 8 10 12 14 16 18
workers

0

8

16

24

32

40

48

Th
ro

ug
hp

ut
 (b

at
ch

es
/s

ec
)

TF
Average
Median
Multi-Krum (f=1)
Multi-Krum (f=4)
Bulyan (f=1)
Bulyan (f=2)
Draco (f=1)
Draco (f=4)

(a) CNN

2 4 6 8 10 12 14 16 18
workers

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
ro

ug
hp

ut
 (b

at
ch

es
/s

ec
)

Average
Median
Multi-Krum (f=1)
Bulyan (f=1)
Draco (f=1)

(b) ResNet50

Figure 5. Throughput comparison.

compensate for the additional noise whereas in the case of
MULTI-KRUM the throughput boost is not enough. For a
smaller mini-batch size (Figure 6(b)) the behaviour is simi-
lar but the impact of f is smaller. This is because the mini-
batch size is the second (the first is f) important parame-
ter that affects the trade-off between update throughput and
quality of each update (§2.1).

0 250 500 750 1000
Time (sec)

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy Multi-Krum (f=1)

Multi-Krum (f=4)
Bulyan (f=1)
Bulyan (f=4)
Draco (f=1)
Draco (f=4)

(a) mini-batch size = 250

0 250 500 750 1000
Time (sec)

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy Multi-Krum (f=1)

Multi-Krum (f=4)
Bulyan (f=1)
Bulyan (f=4)
Draco (f=1)
Draco (f=4)

(b) mini-batch size = 20

Figure 6. Impact of f on convergence.

Cost analysis. Our empirical results are consistent
with the complexity of the algorithmic components of
AGGREGATHOR. The model update time complexity9 of
both MULTI-KRUM and BULYAN is O(n2d). This is es-
sentially the same as a baseline GAR-based SGD algo-
rithm, i.e., averaging10 when d � n (valid assumption
for modern ML). BULYAN induces an additional overhead
of O(nd) (coordinate-wise median) on top of n − 2f ex-

9We refer to the worst-case time complexity.
10Averaging is not Byzantine-resilient.

ecutions of MULTI-KRUM, leading to a total model up-
date complexity of O(nd + f · nd) = O(n2d). We
note that O(n2d) is a common bound on the complex-
ity per round for weakly Byzantine-resilient SGD algo-
rithms (Blanchard et al., 2017; El Mhamdi et al., 2018;
Su, 2017). AGGREGATHOR is strongly Byzantine-resilient
with the same complexity.

Baseline averaging SGD requires O(1√
nb

) steps to con-
verge. In other words SGD goes as fast as permitted by the
square root of the total number of samples used per step.
The more samples, the lower the variance and the better
the gradient estimation.

Everything else being equal (mini-batch sizes, smoothness
of the cost function etc), and in the absence of Byzantine
workers, the number of steps required for AGGREGATHOR
to converge is O(1√

m
). The higher the value of m the

fewer steps required for convergence. The temptation is
then to increase m to the highest value possible, so that
there are fewer steps required to converge. We derive the
maximum possible value for m that ensures weak Byzan-
tine resilience, m̃ = n − 2f − 211, in our Appendix. We

also prove that this will induce a slowdown of Ω(
√

m̃
n) (al-

ways computed as the ratio between AGGREGATHOR and
averaging), in the absence of Byzantine workers. In other
words, m̃ enables the fastest convergence while still ensur-
ing the safety requirement of Byzantine resilience.

4.3 Byzantine Environment

We now report on our evaluation of AGGREGATHOR in
a distributed setting with Byzantine workers. We first re-
port on two forms of weak Byzantine behavior, namely cor-
rupted data and dropped packets. Then we discuss the ef-
fect of a stronger form of Byzantine behavior, drawing the
line between MULTI-KRUM and BULYAN.

Corrupted data. Figure 7 shows that for a mini-batch
size of 250, the convergence behavior of AGGREGATHOR
is similar to the ideal one (TensorFlow in a non-Byzantine
environment). We thus highlight the importance of Byzan-
tine resilience even for this “mild” form of Byzantine be-
havior (only one worker sends corrupted data) to which
TensorFlow is intolerant (TensorFlow diverges).

Dropped packets. We evaluate the impact of using unre-
liable communication between the parameter server and f
(Byzantine) workers. We also evaluate the performance of
alternatives we proposed in §3.3 to tolerate the lost, mal-
formed, and out-of-order packets. For this experiment we

11A higher value (n−f−2) for m can be selected if only weak
Byzantine resilience is required and only MULTI-KRUM is used.

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

0 250 500 750 1000
Time (sec)

0.15

0.30

0.45

0.60

0.75
Ac

cu
ra

cy TF (non-Byzantine)
TF
AggregaThor (f=1)

Figure 7. Impact of malformed input on convergence.

set f to the maximum possible value given our 19 work-
ers, i.e., we set f to 8 (assuming MULTI-KRUM). For sim-
plicity, we employ unreliable communication only for the
gradient transfer12.

We assess the effect of unreliable communication in a lossy
environment by introducing additional (to the existing ones
by the network) network packet drops via the Linux tc tool.
We evaluate the performance of AGGREGATHOR in the ab-
sence of additional packet drops (0% loss) and in the pres-
ence of a drop rate of 10%. This order of magnitude for the
drop ratio, although high for a data-center environment, can
be realistic in a WAN environment (Kumar et al., 2015) for
distributed machine learning (Hsieh et al., 2017).

Figure 8(a)13 shows the performance of the three solu-
tions proposed to tolerate unreliability of the communica-
tion layer (§3.3). The three solutions achieve almost the
same performance. This highlights the advantage of using
UDP as it mitigates the performance lost by Byzantine re-
silience. In this environment where no packet loss exists,
dropping the whole gradient (while using vanilla Tensor-
Flow) does not have remarkable effect on the learning con-
vergence. We expect to see a delayed convergence for such
an algorithm in an environment with a higher loss ratio.

Figure 8(b) shows the advantage of using UDP in a
lossy environment. It depicts that AGGREGATHOR over
lossyMPI converges to 30% accuracy more than 6 times
faster than TensorFlow over gRPC, under an artificial 10%
drop rate. The main reason behind this big difference in the
convergence speed is that the links that employ lossyMPI
(between the server and the Byzantine workers) use a rapid
mechanism to address the packet drops, i.e., they deliver
corrupted messages to which AGGREGATHOR is tolerant.
The convergence time for both systems is one order of mag-
nitude larger compared to the environment with no artificial
drops. We believe this performance drop is induced by TCP
reducing (halving) its transmission rate following packet

12Our setup can be easily extended to support an unreliable
communication for the model transfer without any impact on the
conclusions of our evaluation.

13TF here drops corrupted gradients as described in §3.3.

losses. Finally, Figure 8(b) confirms the divergence of Ten-
sorFlow, which is non Byzantine-resilient, over lossyMPI.

0 600 1200 1800 2400
Time (sec)

0.15

0.30

0.45

0.60

0.75

Ac
cu

ra
cy

TF
Selective Average
AggregaThor (f=8)

(a) 0% drop rate

0 1500 3000 4500 6000
Time (sec)

0.15

0.30

0.45

0.60

Ac
cu

ra
cy AggregaThor (f=8)

TF (gRPC)
TF (lossyMPI)

(b) 10% drop rate

Figure 8. Impact of dropped packets on convergence.

Byzantine gradients. The cost of attacking a non-
Byzantine resilient GARs (such as averaging) is the cost
for the computation of an estimate of the gradient, i.e.,
can be done in O(nd) operations per round by a Byzan-
tine worker. This cost is the same as the aggregation cost
of the server per epoch.

To attack weakly Byzantine-resilient GARs however, such
as MULTI-KRUM, one needs to find a legitimate but harm-
ful vector. A harmful vector is a vector that will (i) be se-
lected by a weakly Byzantine-resilient GAR, and (ii) trig-
gers a poor convergence, i.e., a convergence to an optimum
that makes the performance of the model (e.g., in terms of
accuracy) low in comparison with the one achieved when
learning with no Byzantine workers. An attacker must thus
first collect the vector of every correct worker (before they
reach the server), and solve an optimization problem (with
linear regression) to approximate this harmful but legiti-
mate (selected by weakly Byzantine-resilientGAR) vector.
If the desired quality of the approximation is ε, the Byzan-
tine worker would need at least Ω(ndε) operation to reach it
with regression. This is a tight lower bound for a regression
problem in d dimensions with n vectors (Haykin, 2009). In
practice, if the required precision is in the order of 10−9, a
total of 100 workers and a model of dimension 109 would
require a prohibitive cost for the attack (≈ 1020 operations
to be done in each step by the attacker).

To summarize, weak Byzantine resilience can be enough
as a practical solution against attackers whose resources

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

are comparable to the ones of the server. If that is the ex-
pected setting, we could switch-off BULYAN and use only
MULTI-KRUM. However, strong Byzantine resilience,
i.e., AGGREGATHOR combining both MULTI-KRUM and
BULYAN, remains the provable solution against attackers
with significant resources (El Mhamdi et al., 2018).

5 RELATED WORK

Several weakly Byzantine-resilient algorithms have been
proposed as an improvement of the workhorse SGD
component in the synchronous non-convex setting.
Krum (Blanchard et al., 2017) employed a median-like ag-
gregation rule. (Yin et al., 2018) proposed a median-based
and a mean-based aggregation rules (Equation 4). (Xie
et al., 2018) evaluated three other median-based aggrega-
tion rules under different practical attack scenarios. (Su,
2017) presented a combination of a median-based over a
mean-based aggregation rule. A quorum-based aggregation
approach was recently proposed in (Alistarh et al., 2018),
achieving optimal convergence rates but suitable only for
convex machine learning.

Following a different direction, Draco (Chen et al., 2018)
has been the first framework to address the scalability of
SGD through redundant gradient computations combined
with a specific encoding scheme. In fact Draco is also
strongly Byzantine-resilient following our definition, and
has the advantage of requiring only 2f+1 workers (instead
of 4f + 3 for BULYAN). It has however a serious practi-
cal concern: it can only be used in settings where workers
need (at least) an agreement on the ordering of the dataset
so that the coding scheme can be agreed on. This violates
critical privacy concerns in distributed learning and does
not allow learning on private data. For instance, their algo-
rithmic redundancy scheme requires a comparison between
gradients sum provided by different workers, for this com-
parison to be meaningful, the server needs the incoming
gradients to be computed on similar datapoints, therefore
hampering any possible use in private and local datasets.
AGGREGATHOR in turn only requires the workers to be
drawing data independently and identically distributed (but
not the same datapoints). Additionally, as pointed out by
the authors (Chen et al., 2018), the encoding and decoding
time of Draco can be several times larger than the compu-
tation time of ordinary SGD. AGGREGATHOR avoids this
overhead along with the redundant computations.

The first algorithmic component of AGGREGATHOR,
namely MULTI-KRUM, is a generalization (adaptive ver-
sion) of Krum (Blanchard et al., 2017) in the sense that we
employ a multi-aggregation rule with a dynamic size based
on the value of f . In short, we enable the server to lever-
age m > 1 workers in each step. The idea was mentioned
in (Blanchard et al., 2017) but the proof of (weak) Byzan-
tine resilience was left open. We answer this open question

in the Appendix and prove weak Byzantine resilience for
any integerm such thatm ≤ n−f−2 as well as the result-
ing strong Byzantine resilience of AGGREGATHOR when
m ≤ n− 2f − 2.

6 CONCLUDING REMARKS

We built AGGREGATHOR, a Byzantine-resilient frame-
work, on top of TensorFlow without adding any constraints
to the application development, i.e., AGGREGATHOR ex-
poses the same APIs as TensorFlow. We also corrected an
inherent vulnerability of TensorFlow in the Byzantine set-
ting. The overhead of AGGREGATHOR over TensorFlow
is moderate when there are no Byzantine failures. In fact,
we have also shown that AGGREGATHOR could be viewed
as a performance booster for TensorFlow, as it enables the
use of an unreliable (and faster) underlying communica-
tion protocol, namely UDP instead of TCP, when running
through a saturated network.

While designing AGGREGATHOR, we followed the param-
eter server model (Li et al., 2014) and assumed the server
is reliable while workers are not. This model has been con-
sidered for most theoretical analysis of Byzantine-resilient
SGD (Blanchard et al., 2017; Damaskinos et al., 2018;
El Mhamdi et al., 2018; Chen et al., 2018; Alistarh et al.,
2018; Xie et al., 2018). An orthogonal problem that should
be investigated is the setting where the owner of the system
does not trust their servers. In this case, a server could be
made Byzantine-resilient using some state machine repli-
cation scheme (Schneider, 1990; Castro et al., 1999; Sen
et al., 2010; Cowling et al., 2006; Chen et al., 2015). Es-
sentially, each worker could communicate with the replicas
of the server and use the model that has been sent by 2/3
of the replicas. Since the computation in the server (GAR
and model update) is deterministic, the correct servers will
propose identical models to the workers. Although at first
glance simple, we believe that the interplay between the
specificity of gradient descent and the state machine repli-
cation approach might end up challenging to achieve effi-
ciently.

ACKNOWLEDGMENT

This work has been supported in part by the Swiss National
Science Foundation (FNS grant 200021 182542/1 and FNS
grant 200021 169588/TARBDA).

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

https://www.grid5000.fr

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

REFERENCES

Cifar dataset. https://www.cs.toronto.edu/

˜kriz/cifar.html.

Grid5000. https://www.grid5000.fr/.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In OSDI, 2016a.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. Deep learn-
ing with differential privacy. In SIGSAC, pp. 308–318,
2016b.

Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochas-
tic gradient descent. In Neural Information Processing
Systems, to appear, 2018.

Biggio, B. and Laskov, P. Poisoning attacks against support
vector machines. In ICML, 2012.

Biggio, B. and Roli, F. Wild patterns: Ten years after
the rise of adversarial machine learning. arXiv preprint
arXiv:1712.03141, 2017.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and
Stainer, J. Machine learning with adversaries: Byzantine
tolerant gradient descent. In Neural Information Pro-
cessing Systems, pp. 118–128, 2017.

Bottou, L. Online learning and stochastic approximations.
Online learning in neural networks, 17(9):142, 1998.

Castro, M., Liskov, B., et al. Practical Byzantine fault tol-
erance. In OSDI, volume 99, pp. 173–186, 1999.

Chen, A., Xiao, H., Haeberlen, A., and Phan, L. T. X. Fault
tolerance and the five-second rule. In HotOS, 2015.

Chen, L., Wang, H., Charles, Z., and Papailiopoulos, D.
Draco: Byzantine-resilient distributed training via re-
dundant gradients. In International Conference on Ma-
chine Learning, pp. 902–911, 2018.

Chilimbi, T. M., Suzue, Y., Apacible, J., and Kalyanara-
man, K. Project adam: Building an efficient and scalable
deep learning training system. In OSDI, volume 14, pp.
571–582, 2014.

Cowling, J., Myers, D., Liskov, B., Rodrigues, R., and
Shrira, L. Hq replication: A hybrid quorum protocol
for Byzantine fault tolerance. In OSDI, pp. 177–190.
USENIX Association, 2006.

Damaskinos, G., El Mhamdi, E. M., Guerraoui, R., Patra,
R., Taziki, M., et al. Asynchronous byzantine machine
learning (the case of sgd). In ICML, pp. 1153–1162,
2018.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V.,
et al. Large scale distributed deep networks. In Neural
Information Processing Systems, pp. 1223–1231, 2012.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J.,
Ankur, M., and Alistair, S. Robustly learning a gaus-
sian: Getting optimal error, efficiently. arXiv preprint
arXiv:1704.03866, 2017.

El-Mhamdi, E.-M. and Guerraoui, R. Fast and secure
distributed learning in high dimension. arXiv preprint
arXiv:, 2019.

El Mhamdi, E. M., Guerraoui, R., and Rouault,
S. The hidden vulnerability of distributed learn-
ing in Byzantium. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3521–
3530, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR. URL http://proceedings.
mlr.press/v80/mhamdi18a.html.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch sgd: training imagenet in
1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gunawi, H. S., Suminto, R. O., Sears, R., Golliher, C., Sun-
dararaman, S., Lin, X., Emami, T., Sheng, W., Bidokhti,
N., McCaffrey, C., Grider, G., Fields, P. M., Harms, K.,
Ross, R. B., Jacobson, A., Ricci, R., Webb, K., Alvaro,
P., Runesha, H. B., Hao, M., and Li, H. Fail-slow at
scale: Evidence of hardware performance faults in large
production systems. In FAST, pp. 1–14, 2018.

Haykin, S. S. Neural networks and learning machines, vol-
ume 3. Pearson Upper Saddle River, NJ, USA:, 2009.

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D.,
Ganger, G. R., Gibbons, P. B., and Mutlu, O. Gaia: Geo-
distributed machine learning approaching lan speeds. In
NSDI, pp. 629–647, 2017.

Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krishnan, S.,
Hofmann, T., and Jordan, M. I. Communication-efficient
distributed dual coordinate ascent. In Neural Informa-
tion Processing Systems, pp. 3068–3076, 2014.

Kumar, A., Jain, S., Naik, U., Raghuraman, A., Kasinad-
huni, N., Zermeno, E. C., Gunn, C. S., Ai, J., Carlin, B.,
Amarandei-Stavila, M., et al. Bwe: Flexible, hierarchi-
cal bandwidth allocation for wan distributed computing.
In SIGCOMM, volume 45, pp. 1–14. ACM, 2015.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.grid5000.fr/
http://proceedings.mlr.press/v80/mhamdi18a.html
http://proceedings.mlr.press/v80/mhamdi18a.html

AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 1, pp. 3, 2014.

Mallat, S. Understanding deep convolutional networks.
Phil. Trans. R. Soc. A, 374(2065):20150203, 2016.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkatara-
man, S., Liu, D., Freeman, J., Tsai, D., Amde, M., Owen,
S., et al. Mllib: Machine learning in apache spark.
JMLR, 17(1):1235–1241, 2016.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. Practical black-box attacks against
machine learning. In Asia Conference on Computer and
Communications Security, pp. 506–519, 2017.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Neural Information Processing Systems, pp.
693–701, 2011.

Schneider, F. B. Implementing fault-tolerant services using
the state machine approach: A tutorial. CSUR, 22(4):
299–319, 1990.

Sen, S., Lloyd, W., and Freedman, M. J. Prophecy: Using
history for high-throughput fault tolerance. In NSDI, pp.
345–360, 2010.

Shokri, R. and Shmatikov, V. Privacy-preserving deep
learning. In SIGSAC, pp. 1310–1321, 2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. JMLR, 15(1):1929–
1958, 2014.

Su, L. Defending distributed systems against adversarial
attacks: consensus, consensus-based learning, and sta-
tistical learning. PhD thesis, University of Illinois at
Urbana-Champaign, 2017.

Tieleman, T. and Hinton, G. Lecture 6.5–rmsprop: Di-
vide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural Networks for Machine
Learning, 2012.

Xie, C., Koyejo, O., and Gupta, I. Generalized Byzantine-
tolerant sgd. arXiv preprint arXiv:1802.10116, 2018.

Yin, D., Chen, Y., Ramchandran, K., and Bartlett, P.
Byzantine-robust distributed learning: Towards optimal
statistical rates. arXiv preprint arXiv:1803.01498, 2018.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X.,
Hu, Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An
efficient communication architecture for distributed deep

learning on GPU clusters. In USENIX ATC, pp. 181–193,
2017.

A. Artifact Appendix
A.1 Abstract
A.2 Artifact check-list (meta-information)
• Program: TensorFlow (1.10.1), Python (3.5+)
• Compilation: C++11
• Data set: MNIST, CIFAR–10, ImageNet (optional), . . .
• Run-time environment: Debian GNU/Linux (or equivalent)
• Hardware: G5k (or equivalent), see Section A.3.2
• Metrics: (time to reach some) top–1 cross–accuracy
• How much disk space required (approximately)?: <1 MB

(code only)
• How much time is needed to prepare workflow (approxi-

mately)?: a few minutes to a few hours (several optional
components, some demanding a rebuild of TensorFlow)
• How much time is needed to complete experiments (approx-

imately)?: two minutes (see Section A.6) to a few days (for
all the experiments of the main paper)
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT

A.3 Description
A.3.1 How delivered
Two open–sourced versions:
• AggregaThor.zip, reviewed and obtained the ACM badges.
https://doi.org/10.5281/zenodo.2548779.
• LPD-EPFL/AggregaThor, public git repository, latest version.
https://github.com/LPD-EPFL/AggregaThor

A.3.2 Hardware dependencies
No hardware dependencies for CPU nodes. GPU nodes must be
CUDA–compatible. To reproduce the experiments in the same con-
ditions, use Grid5000 (https://www.grid5000.fr). Neverthe-
less, any recent consumer–grade computer enables basic checks.

A.3.3 Software dependencies
• TensorFlow (1.10.1)
• Python (3.5+)

A.3.4 Datasets
We employ MNIST and CIFAR-10 in our experiments. MNIST is
automatically downloaded by running our code. CIFAR-10 has to
be installed manually. The setup procedure should simply consist
in 1. cloning tensorflow/models from GitHub, 2. download the
dataset (1 command) and 3. updating a symlink. See Section A.4.1.

A.4 Installation
Our implementation of AggregaThor consists of Python scripts and
C++11 sources. Compilation of the native source code is carried
out automatically. We refer to the AggregaThor/README.md file
inside our zip file (A.3.1) for installation and usage instructions.

Our experiments have been run using TensorFlow 1.10.1. The
installation steps are available at https://www.tensorflow.

org/install/. See A.4.2 for installing the optional patches.

A.4.1 TensorFlow slim
AggregaThor has one recommended (but not necessary) depen-
dency: “slim” (https://github.com/tensorflow/models/
tree/master/research/slim). You would need to clone (or
download) this dependency, and modify the following symlinks:

• (recommended) AggregaThor/experiments/slim package
→ path/to/research/slim

• (recommended) AggregaThor/experiments/slim datasets/cifar10
→ path/to/cifar10/tfrecord

• (optional) AggregaThor/experiments/slim datasets/imagenet
→ path/to/imagenet/tfrecord

Please note that the dataset must be in the tfrecord format. Please
see https://github.com/tensorflow/models/tree/master/
research/slim#Data for setting up these datasets.

As a side note, the directory AggregaThor/external/slim con-
tains optional modifications for “slim”. The sub–directory struc-
ture matches the one of “slim”. The files found there are a modified
version of the files found at in the respective sub–directory , which
sole purpose is to add variants of the ResNet model family.

A.4.2 TensorFlow patches
Installation is necessary only for reproducing the udp-related exper-
iments. Otherwise this step can be skipped. We refer to the Aggre-
gaThor/tf patches/README.md file inside our zip file for detailed
instruction.

A.5 Experiment workflow
We recommend first following AggregaThor/README.md, and
the sections “Local deployment” and “Distributed deployment”.

In particular, right after having inflated the provided ZIP file
and installed TensorFlow (Section A.4), the command from “Local
deployment” should work (basically, no error message in red). This
provides to the reviewer a quick way to check the proper setup of
TensorFlow and Python, if needed. For convenience, we copy the
aforementioned command below:

$ python3 runner.py

--server ’{"local": ["127.0.0.1:7000"]}’
--ps-job-name local

--wk-job-name local

--ev-job-name local

--experiment mnist

--learning-rate-args

initial-rate:0.05

--aggregator average

--nb-workers 4

--reuse-gpu

--max-step 10000

--evaluation-period -1

--checkpoint-period -1

--summary-period -1

--evaluation-delta 100

--checkpoint-delta -1

--summary-delta -1

--no-wait

Each experiment is entirely controlled by the command line of
AggregaThor/runner.py. The parameters of this script are docu-
mented in AggregaThor/README.md and in Section A.7.

1

https://doi.org/10.5281/zenodo.2548779
https://github.com/LPD-EPFL/AggregaThor
https://www.grid5000.fr
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim#Data
https://github.com/tensorflow/models/tree/master/research/slim#Data

The textual output of AggregaThor/runner.py uses intuitive
color codes. Main execution steps are reported in green, while
most other informational lines are written in blue. Warnings (i.e.
non fatal errors) are reported in yellow. These often provide useful
information to the user, e.g., why an experiment cannot be used
(one would see some of these messages when using command
from “Local deployment” before having installed “slim”). Fatal er-
rors are reported in red. Our code raises several kinds of exceptions
to signal fatal conditions. An explanatory string is always provided.

There is no script that reproduces the full set of experiments
in the paper. We provide a template script (experiments.sh) that
merely executes the two commands (deploy.py then runner.py)
needed to carry out any distributed experiment. See Section A.7.

A.6 Evaluation and expected result
For the command line given in sections “Local deployment” and
“Distributed deployment” of AggregaThor/README.md, both
should terminate on a recent consumer–grade computer in less than
2 minutes. One one Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz,
the command given in Section A.5 terminates in less than a minute,
with a top–1 cross–accuracy around 97%.

You would need to run on Grid5000 to obtain the same perfor-
mance results of the main paper. Nevertheless, you should be able
to obtain very similar results using any equivalent platform. Please
see the main paper for the specifications of the machines we used.

A.7 Experiment customization
As written above, each experiment is entirely controlled by the
command line of AggregaThor/runner.py. We list below useful
options, and the hyperparameters each of these options controls:

--experiment

Experiment (i.e. model + dataset) to train/evaluate. The list may
be limited if “slim” has not been (properly) installed. Leave this
field empty (i.e. put "") to get the list of available experiments.

--experiment-args

A experiment–dependant space–separated set of strings. The
usual format for each of these string is: property :value ,
e.g. batch-size:32. Since these arguments are experiment–
dependant, you can find a per–experiment complete list in the
respective sources files, in AggregaThor/experiments/. . .
. . . mnist.py:108
. . . cnnet.py:117
. . . slim.py:100

--aggregator

Gradient Aggregation Rule (GAR) to use. Leave this field
empty (i.e. put "") to get the list of available GARs.

--aggregator-args

Same as for --experiment-args, although none of the pro-
vided GAR support these additional arguments (i.e. if you pro-
vide some arguments here, they will be ignored by our GARs).

--optimizer

Update rule to use. One of:
• adadelta (tf.train.AdadeltaOptimizer)
• adagrad (tf.train.AdagradOptimizer)
• adam (tf.train.AdamOptimizer)
• rmsprop (tf.train.RMSPropOptimizer)
• sgd (tf.train.GradientDescentOptimizer)

--optimizer-args

The list of dependant parameters is available at
AggregaThor/graph.py:58

--learning-rate

Learning rate evolution. One of:
• fixed (tf.constant)
• polynomial (tf.train.polynomial decay)
• exponential (tf.train.exponential decay)

--optimizer-args

The list of dependant parameters is available at:
AggregaThor/graph.py:51

--l1-regularize

L1 regularization parameter to use, none by default.

--l2-regularize

L2 regularization parameter to use, none by default.

Please note that none of the options --attack or --attack-args
is yet supported. The attack shown in the paper can be carried out
by the mnistAttack experiment (experiments/mnistAttack.py).

Our implementation of AggregaThor is modular. Adding a new
experiment only boils down to adding a Python module to Aggre-
gaThor/experiments/. The same applies for a new aggregation rule,
in AggregaThor/aggregators/. We don’t provide explicit documen-
tation for these steps, but we believe experiments/mnist.py and ag-
gregators/average.py are simple enough to act as templates.

A.8 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/
policies/artifact-review-badging

2

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/
policies/artifact-review-badging

Supplementary proofs: AGGREGATHOR

Byzantine-resilience and Convergence Speed*.

Abstract

In [1], Krum, the first provably Byzantine resilient algorithm for SGD, was
introduced. Krum only uses one worker per step, which hampers its speed of con-
vergence, especially in best case conditions when none of the workers is actually
Byzantine. The idea behind MULTI-KRUM, of using m > 1 different workers
per step was mentioned in [1], without however any proof neither on its Byzantine
resilience nor on its slowdown. The present technical report closes this open prob-
lem and provides proofs of (weak) Byzantine resilience, convergence, and

√
m
n

slowdown of MULTI-KRUM compared to the optimal averaging in the absence of
Byzantine workers. Based on that, and on the theoretical work of [4], we prove the
similar

√
m
n

slowdown of AGGREGATHOR and its (strong) Byzantine resilience.
We deduce that AGGREGATHOR ensures strong Byzantine resilience and the very
fact that it is

√
m
n

times as fast as the optimal algorithm (averaging) in the absence
of Byzantine workers.

AGGREGATHOR is the composition of MULTI-KRUM and BULYAN, which can
be viewed as generalization (also using m different workers per step to leverage
the fact that f , possibly less than a minority can be faulty) of Bulyan, the defense
mechanism of [4]. Before presenting in Section 2, our proofs of convergence and
slow down of MULTI-KRUM and in Section 3 our proofs of convergence and slow
down of BULYAN and hence AGGREGATHOR, we introduce in Section 1 a tool-
box of formal definitions: weak, strong, and (α, f)–Byzantine resilience. We also
present a necessary context on non-convex optimization, as well as its interplay
with the high dimensionality of machine learning together with the

√
d leeway it

provides to strong attackers.

1 Theoretical Context
Intuitively, weak Byzantine resilience requires a GAR to guarantee convergence de-
spite the presence of f Byzantine workers. It can be formally stated as follows.

Definition 1 (Weak Byzantine resilience). We say that aGAR ensures weak f -Byzantine
resilience if the sequence x(k) (Equation 2 in the main paper) converges almost surely
to some x∗ where ∇Q(x∗) = 0, despite the presence of f Byzantine workers.

*This theoretical note is part of a more detailed analysis available in [3]

1

Figure 1: In a non-convex situation, two correct vectors (black arrows) are point-
ing towards the deep optimum located in area B, both vectors belong to the plane
formed by lines L1 and L2. A Byzantine worker (magenta) is taking benefit from
the third dimension, and the non-convex landscape, to place a vector that is head-
ing towards one of the bad local optimums of area A. This Byzantine vector is
located in the plane (L1,L3). Due to the variance of the correct workers on the
plane (L1,L2), the Byzantine one has a budget of about

√
3 times the disagree-

ment of the correct workers, to put as a deviation towards A, on the line (L3),
while still being selected by a weak Byzantine resilient GAR, since its projection
on the plane (L1,L2) lies exactly on the line (L1), unlike that of the correct work-
ers. In very high dimensions, the situation is amplified by

√
d.

On the other hand, strong Byzantine resilience requires that this convergence does
not lead to ”bad” optimums, and is related to more intricate problem of non-convex
optimization, which, in the presence of Byzantine workers, is highly aggravated by the
dimension of the problem as explained in what follows.

Specificity of non-convex optimization. Non-convex optimization is one of the ear-
liest established NP-hard problems [5]. In fact, many, if not all of the interesting but
hard questions in machine learning boil down to one answer: ”because the cost function
is not convex”.

In distributed machine learning, the non-convexity of the cost function creates two
non-intuitive behaviours that are important to highlight.

(1) A ”mild” Byzantine worker can make the system converge faster. For instance,
it has been reported several times in the literature that noise accelerates learning [2,
5]. This can be understood from the ”S” (stochasticity) of SGD: as (correct) workers
cannot have a full picture of the surrounding landscape of the loss, they can only draw
a sample at random and estimate the best direction based on that sample, which can
be - and is probably - different the true gradient. But on expectation (over samples)
this gradient estimate is equal to the true gradient. Moreover, due to non-convexity,
even the true gradient might be leading to the local minima where the parameter server
is. By providing a wrong direction (i.e., not the true gradient, or a correct stochastic
estimation), a Byzantine worker might end up providing a direction to get out of that

2

local minima ! Unless of course when the computational resources of that Byzantine
worker can face the high-dimensional landscape of the loss and find a truly misleading
update vector.

(2) Combined with high dimensional issues, non-convexity explains the need for
strong Byzantine resilience. Unlike the ”mild” Byzantine worker, a strong adversary
with more resources than the workers and the server, can see a larger picture and pro-
vide an attack that requires a stronger requirement. Namely, a requirement that would
cut the

√
d leeway offered to an attacker in each dimension. Figure 1 provides an

illustration.
This motivates the following formalization of strong Byzantine resilience.

Definition 2 (Strong Byzantine resilience). We say that a GAR ensures strong f -
Byzantine resilient if for every i ∈ [1, d], there exists a correct gradient G (i.e., com-
puted by a non-Byzantine worker) s.t. E|GARi −Gi| = O(1√

d
). The the expectation

is taken over the random samples (ξ in Equation 4 of the main paper)and vi denotes
the ith coordinate of a vector v.

For the sake of our theoretical analysis, we also introduce the definition of (α, f)–
Byzantine resilience (Definition 3). This definition is a sufficient condition (as proved
in [1] based on [2]) for weak Byzantine resilience that we introduce and require from
GARs in our main paper (Section 2, Definition 1). Eventhough the property of (α, f)–
Byzantine resilience is a sufficient, but not a necessary condition for (weak) Byzan-
tine resilience, it has been so far used as the defacto standard [1, 7] to guarantee
(weak) Byzantine resilience for SGD. We will therefore follow this standard and re-
quire (α, f)–Byzantine resilience from anyGAR that is plugged into AGGREGATHOR,
in particular, we will require it from MULTI-KRUM. The theoretical analysis done
in [4] guarantees that BULYAN inherits it.

Intuitively, Definition 3 states that the gradient aggregation rule GAR produces an
output vector that lives, on average (over random samples used by SGD), in the cone
of angle α around the true gradient. We simply call this the ”correct cone”.

Definition 3 ((α, f)–Byzantine resilience). Let 0 ≤ α < π/2 be any angular value,
and any integer 0 ≤ f ≤ n. Let V1, . . . , Vn be any independent identically distributed
random vectors in Rd, Vi ∼ G, with EG = g. Let B1, . . . , Bf be any random vectors
in Rd, possibly dependent on the Vi’s. An aggregation rule GAR is said to be (α, f)-
Byzantine resilient if, for any 1 ≤ j1 < · · · < jf ≤ n, vector

GAR = GAR(V1, . . . , B1︸︷︷︸
j1

, . . . , Bf︸︷︷︸
jf

, . . . , Vn)

satisfies (i) 〈EGAR, g〉 ≥ (1− sinα) · ‖g‖2 > 0 1 and (ii) for r = 2, 3, 4, E ‖GAR‖r
is bounded above by a linear combination of terms E ‖G‖r1 . . .E ‖G‖rn−1 with r1 +
· · ·+ rn−1 = r.

1Having a scalar product that is lower bounded by this value guarantees that the GAR of MULTI-KRUM
lives in the aformentioned cone. For a visualisation of this requirement, see the ball and inner triangle of
Figure 2

3

We first prove the (α, f)–Byzantine resilience of MULTI-KRUM (Lemma 1), then
prove its almost sure convergence (Lemma 2) based on that, which proves the weak
Byzantine resilience of MULTI-KRUM (Theorem 1).

In all what follows, expectations are taken over random samples used by correct
workers to estimate the gradient, i.e the ”S” (stochasticity) that is inherent to SGD. It
is worth noting that this analysis in expectation is not an average case analysis from
the point of view of Byzantine fault tolerance. For instance, the Byzantine worker is
always assumed to follow arbitrarily bad policies and the analysis is a worst-case one.

The Byzantine resilience proof (Lemma 1) relies on the following observation:
given m ≤ n − f − 2, and in particular m = n − f − 2 2, m-Krum averages m
gradients that are all in the ”correct cone”, and a cone is a convex set, thus stable by
averaging. The resulting vectors therefore also live in that cone. The angle of the cone
will depend on a variable η(n.f) as in [1], the value of η(n.f) itself depends on m.
This is what enables us to use multi-Krum as the basis of our MULTI-KRUM, unlike [1]
where a restriction is made on m = 1.

The proof of Lemma 2 is the same as the one in [1] which itself draws on the
rather classic analysis of SGD made by L.Bottou [2]. The key concepts are (1) a global
confinement of the sequence of parameter vectors and (2) a bound on the statistical
moments of the random sequence of estimators built by the GAR of MULTI-KRUM.
As in [1,2], reasonable assumptions are made on the cost functionQ, those assumption
are not restrictive and are common in practical machine learning.

2 MULTI-KRUM: Weak Byzantine Resilience and Slow-
down

Let n be any integer greater than 2, f any integer s.t f ≤ n−2
2 and m an integer s.t

m ≤ n− f − 2. Let m̃ = n− f − 2.

Theorem 1 (Byzantine resilience and slowdown of MULTI-KRUM). Let m be any
integer s.t. m ≤ n − f − 2. (i) MULTI-KRUM has weak Byzantine resilience against
f failures. (ii) In the absence of Byzantine workers, MULTI-KRUM has a slowdown

(expressed in ratio with averaging) of Ω(
√

m̃
n).

Proof. Proof of (i). To prove (i), we will require Lemma 1 and Lemma 2, then con-
clude by construction of MULTI-KRUM as a multi-Krum algorithm withm = n−f−2.

Lemma 1. Let V1, . . . , Vn be any independent and identically distributed random d-
dimensional vectors s.t Vi ∼ G, with EG = g and E ‖G− g‖2 = dσ2. LetB1, . . . , Bf
be any f random vectors, possibly dependent on the Vi’s. If 2f+2 < n and η(n, f)

√
d·

σ < ‖g‖, where

η(n, f) =
def

√
2

(
n− f +

f ·m+ f2 · (m+ 1)

m

)
,

2The slowdown question is an incentive to take the highest value of m among those that satisfy Byzantine
resilience, in this case m̃.

4

then the GAR function of MULTI-KRUM is (α, f)-Byzantine resilient where 0 ≤ α <
π/2 is defined by

sinα =
η(n, f) ·

√
d · σ

‖g‖
.

Proof. Without loss of generality, we assume that the Byzantine vectors B1, . . . , Bf
occupy the last f positions in the list of arguments of MULTI-KRUM, i.e., MULTI-KRUM =
MULTI-KRUM(V1, . . . , Vn−f , B1, . . . , Bf). An index is correct if it refers to a vector
among V1, . . . , Vn−f . An index is Byzantine if it refers to a vector among B1, . . . , Bf .
For each index (correct or Byzantine) i, we denote by δc(i) (resp. δb(i)) the number
of correct (resp. Byzantine) indices j such that i → j (the notation we introduced
in Section 3 when defining MULTI-KRUM), i.e the number of workers, among the m
neighbors of i that are correct (resp. Byzantine). We have

δc(i)+δb(i) = m

n− 2f − 2 ≤δc(i) ≤ m
δb(i) ≤ f.

We focus first on the condition (i) of (α, f)-Byzantine resilience. We determine an
upper bound on the squared distance ‖EMULTI-KRUM−g‖2. Note that, for any correct
j, EVj = g. We denote by i∗ the index of the worst scoring among the m vectors
chosen by the MULTI-KRUM function, i.e one that ranks with the mth smallest score
in Equation 5 of the main paper (Section 3).

‖EMULTI-KRUM − g‖2 ≤

∥∥∥∥∥∥E
MULTI-KRUM − 1

δc(i∗)

∑
i∗→ correct j

Vj

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥MULTI-KRUM − 1

δc(i∗)

∑
i∗→ correct j

Vj

∥∥∥∥∥∥
2

(Jensen inequality)

≤
∑

correct i

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

I(i∗ = i)

+
∑
byz k

E

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

I(i∗ = k)

where I denotes the indicator function3. We examine the case i∗ = i for some correct
index i.∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

δc(i)

∑
i→ correct j

Vi − Vj

∥∥∥∥∥∥
2

3I(P) equals 1 if the predicate P is true, and 0 otherwise.

5

≤ 1

δc(i)

∑
i→ correct j

‖Vi − Vj‖2 (Jensen inequality)

E

∥∥∥∥∥∥Vi − 1

δc(i)

∑
i→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(i)

∑
i→ correct j

E ‖Vi − Vj‖2

≤ 2dσ2.

We now examine the case i∗ = k for some Byzantine index k. The fact that k mini-
mizes the score implies that for all correct indices i∑
k→ correct j

‖Bk − Vj‖2+
∑

k→ byz l

‖Bk −Bl‖2 ≤
∑

i→ correct j

‖Vi − Vj‖2+
∑

i→ byz l

‖Vi −Bl‖2 .

Then, for all correct indices i∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
k→ correct j

‖Bk − Vj‖2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
1

δc(k)

∑
i→ byz l

‖Vi −Bl‖2︸ ︷︷ ︸
D2(i)

.

We focus on the term D2(i). Each correct process i has m neighbors, and f + 1
non-neighbors. Thus there exists a correct worker ζ(i) which is farther from i than
any of the neighbors of i. In particular, for each Byzantine index l such that i → l,
‖Vi −Bl‖2 ≤

∥∥Vi − Vζ(i)∥∥2. Whence∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
δb(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2

E

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→ correct j

Vj

∥∥∥∥∥∥
2

≤ δc(i)

δc(k)
· 2dσ2 +

δb(i)

δc(k)

∑
correct j 6=i

E ‖Vi − Vj‖2 I(ζ(i) = j)

≤
(
δc(i)

δc(k)
·+ δb(i)

δc(k)
(m+ 1)

)
2dσ2

≤
(

m

n− 2f − 2
+

f

n− 2f − 2
· (m+ 1)

)
2dσ2.

Putting everything back together, we obtain

‖EMULTI-KRUM − g‖2 ≤ (n− f)2dσ2 + f ·
(

m

n− 2f − 2
+

f

n− 2f − 2
· (m+ 1)

)
2dσ2

≤ 2

(
n− f +

f ·m+ f2 · (m+ 1)

n− 2f − 2

)
︸ ︷︷ ︸

η2(n,f)

dσ2.

6

By assumption, η(n, f)
√
dσ < ‖g‖, i.e., EMULTI-KRUM belongs to a ball centered at

g with radius η(n, f) ·
√
d · σ. This implies

〈EMULTI-KRUM, g〉 ≥
(
‖g‖ − η(n, f) ·

√
d · σ

)
· ‖g‖ = (1− sinα) · ‖g‖2.

To sum up, condition (i) of the (α, f)-Byzantine resilience property holds. We now
focus on condition (ii).

E‖MULTI-KRUM‖r =
∑

correct i

E ‖Vi‖r I(i∗ = i) +
∑
byz k

E ‖Bk‖r I(i∗ = k)

≤ (n− f)E ‖G‖r +
∑
byz k

E ‖Bk‖r I(i∗ = k).

Denoting by C a generic constant, when i∗ = k, we have for all correct indices i∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥ ≤
√√√√ 1

δc(k)

∑
i→ correct j

‖Vi − Vj‖2 +
δb(i)

δc(k)

∥∥Vi − Vζ(i)∥∥2

≤ C ·

√ 1

δc(k)
·
∑

i→correct j

‖Vi − Vj‖+

√
δb(i)

δc(k)
·
∥∥Vi − Vζ(i)∥∥

≤ C ·

∑
correct j

‖Vj‖ (triangular inequality).

The second inequality comes from the equivalence of norms in finite dimension. Now

‖Bk‖ ≤

∥∥∥∥∥∥Bk − 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

δc(k)

∑
k→correct j

Vj

∥∥∥∥∥∥
≤ C ·

∑
correct j

‖Vj‖

‖Bk‖r ≤ C ·
∑

r1+···+rn−f=r

‖V1‖r1 · · · ‖Vn−f‖rn−f .

Since the Vi’s are independent, we finally obtain that E ‖MULTI-KRUM‖r is bounded
above by a linear combination of terms of the form E ‖V1‖r1 · · ·E ‖Vn−f‖rn−f =
E ‖G‖r1 · · ·E ‖G‖rn−f with r1+· · ·+rn−f = r. This completes the proof of condition
(ii).

Lemma 2. Assume that (i) the cost function Q is three times differentiable with con-
tinuous derivatives, and is non-negative, Q(x) ≥ 0; (ii) the learning rates satisfy∑
t γt =∞ and

∑
t γ

2
t <∞; (iii) the gradient estimator satisfies EG(x, ξ) = ∇Q(x)

7

and ∀r ∈ {2, . . . , 4}, E‖G(x, ξ)‖r ≤ Ar + Br‖x‖r for some constants Ar, Br; (iv)
there exists a constant 0 ≤ α < π/2 such that for all x

η(n, f) ·
√
d · σ(x) ≤ ‖∇Q(x)‖ · sinα;

(v) finally, beyond a certain horizon, ‖x‖2 ≥ D, there exist ε > 0 and 0 ≤ β < π/2−α
such that

‖∇Q(x)‖ ≥ ε > 0

〈x,∇Q(x)〉
‖x‖ · ‖∇Q(x)‖

≥ cosβ.

Then the sequence of gradients ∇Q(xt) converges almost surely to zero.

Proof. For the sake of simplicity, we write MULTI-KRUMt = MULTI-KRUM(V t1 , . . . , V
t
n).

Before proving the main claim of the proposition, we first show that the sequence xt is
almost surely globally confined within the region ‖x‖2 ≤ D.

(Global confinement). Let ut = φ(‖xt‖2) where

φ(a) =

{
0 if a < D

(a−D)2 otherwise

Note that
φ(b)− φ(a) ≤ (b− a)φ′(a) + (b− a)2. (1)

This becomes an equality when a, b ≥ D. Applying this inequality to ut+1− ut yields

ut+1 − ut ≤
(
−2γt〈xt,MULTI-KRUMt〉+ γ2t ‖MULTI-KRUMt‖2

)
· φ′(‖xt‖2)

+ 4γ2t 〈xt,MULTI-KRUMt〉2 − 4γ3t 〈xt,MULTI-KRUMt〉‖MULTI-KRUMt‖2

+ γ4t ‖MULTI-KRUMt‖4

≤ −2γt〈xt,MULTI-KRUMt〉φ′(‖xt‖2) + γ2t ‖MULTI-KRUMt‖2φ′(‖xt‖2)

+ 4γ2t ‖xt‖2‖MULTI-KRUMt‖2 + 4γ3t ‖xt‖‖MULTI-KRUMt‖3

+ γ4t ‖MULTI-KRUMt‖4.

Let Pt denote the σ-algebra encoding all the information up to round t. Taking the
conditional expectation with respect to Pt yields

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EMULTI-KRUMt〉+ γ2t E
(
‖MULTI-KRUMt‖2

)
φ′(‖xt‖2)

+ 4γ2t ‖xt‖2E
(
‖MULTI-KRUMt‖2

)
+ 4γ3t ‖xt‖E

(
‖MULTI-KRUMt‖3

)
+ γ4t E

(
‖MULTI-KRUMt‖4

)
.

Thanks to condition (ii) of (α, f)-Byzantine resilience, and the assumption on the first
four moments of G, there exist positive constants A0, B0 such that

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EMULTI-KRUMt〉φ′(‖xt‖2) + γ2t
(
A0 +B0‖xt‖4

)
.

8

Thus, there exist positive constant A,B such that

E (ut+1 − ut|Pt) ≤ −2γt〈xt,EMULTI-KRUMt〉φ′(‖xt‖2) + γ2t (A+B · ut) .

When ‖xt‖2 < D, the first term of the right hand side is null because φ′(‖xt‖2) = 0.
When ‖xt‖2 ≥ D, this first term is negative because (see Figure 2)

〈xt,EMULTI-KRUMt〉 ≥ ‖xt‖ · ‖EMULTI-KRUMt‖ · cos(α+ β) > 0.

Hence
E (ut+1 − ut|Pt) ≤ γ2t (A+B · ut) .

We define two auxiliary sequences

µt =
t∏
i=1

1

1− γ2iB
−−−→
t→∞

µ∞

u′t = µtut.

Note that the sequence µt converges because
∑
t γ

2
t <∞. Then

E
(
u′t+1 − u′t|Pt

)
≤ γ2t µtA.

Consider the indicator of the positive variations of the left-hand side

χt =

{
1 if E

(
u′t+1 − u′t|Pt

)
> 0

0 otherwise

Then
E
(
χt · (u′t+1 − u′t)

)
≤ E

(
χt · E

(
u′t+1 − u′t|Pt

))
≤ γ2t µtA.

The right-hand side of the previous inequality is the summand of a convergent series.
By the quasi-martingale convergence theorem [6], this shows that the sequence u′t con-
verges almost surely, which in turn shows that the sequence ut converges almost surely,
ut → u∞ ≥ 0.

Let us assume that u∞ > 0. When t is large enough, this implies that ‖xt‖2 and
‖xt+1‖2 are greater than D. Inequality 1 becomes an equality, which implies that the
following infinite sum converges almost surely

∞∑
t=1

γt〈xt,EMULTI-KRUMt〉φ′(‖xt‖2) <∞.

Note that the sequence φ′(‖xt‖2) converges to a positive value. In the region ‖xt‖2 >
D, we have

〈xt,EMULTI-KRUMt〉 ≥
√
D · ‖EMULTI-KRUMt‖ · cos(α+ β)

≥
√
D ·
(
‖∇Q(xt)‖ − η(n, f) ·

√
d · σ(xt)

)
· cos(α+ β)

≥
√
D · ε · (1− sinα) · cos(α+ β) > 0.

9

This contradicts the fact that
∑∞
t=1 γt = ∞. Therefore, the sequence ut converges

to zero. This convergence implies that the sequence ‖xt‖2 is bounded, i.e., the vec-
tor xt is confined in a bounded region containing the origin. As a consequence, any
continuous function of xt is also bounded, such as, e.g., ‖xt‖2, E ‖G(xt, ξ)‖2 and all
the derivatives of the cost function Q(xt). In the sequel, positive constants K1,K2,
etc. . . are introduced whenever such a bound is used.

(Convergence). We proceed to show that the gradient∇Q(xt) converges almost surely
to zero. We define

ht = Q(xt).

Using a first-order Taylor expansion and bounding the second derivative with K1, we
obtain

|ht+1 − ht + 2γt〈MULTI-KRUMt,∇Q(xt)〉| ≤ γ2t ‖MULTI-KRUMt‖2K1 a.s.

Therefore

E (ht+1 − ht|Pt) ≤ −2γt〈EMULTI-KRUMt,∇Q(xt)〉+γ2t E
(
‖MULTI-KRUMt‖2|Pt

)
K1.

(2)
By the properties of (α, f)-Byzantine resiliency, this implies

E (ht+1 − ht|Pt) ≤ γ2tK2K1,

which in turn implies that the positive variations of ht are also bounded

E (χt · (ht+1 − ht)) ≤ γ2tK2K1.

The right-hand side is the summand of a convergent infinite sum. By the quasi-martingale
convergence theorem, the sequence ht converges almost surely, Q(xt)→ Q∞.

Taking the expectation of Inequality 2, and summing on t = 1, . . . ,∞, the conver-
gence of Q(xt) implies that

∞∑
t=1

γt〈EMULTI-KRUMt,∇Q(xt)〉 <∞ a.s.

We now define
ρt = ‖∇Q(xt)‖2 .

Using a Taylor expansion, as demonstrated for the variations of ht, we obtain

ρt+1−ρt ≤ −2γt〈MULTI-KRUMt,
(
∇2Q(xt)

)
·∇Q(xt)〉+γ2t ‖MULTI-KRUMt‖2K3 a.s.

Taking the conditional expectation, and bounding the second derivatives by K4,

E (ρt+1 − ρt|Pt) ≤ 2γt〈EMULTI-KRUMt,∇Q(xt)〉K4 + γ2tK2K3.

The positive expected variations of ρt are bounded

E (χt · (ρt+1 − ρt)) ≤ 2γtE〈EMULTI-KRUMt,∇Q(xt)〉K4 + γ2tK2K3.

10

r

η
√
dσα

β ∇Q(xt)

xt

Figure 2: Condition on the angles between xt, ∇Q(xt) and the the GAR of
MULTI-KRUM vector EMULTI-KRUMt, in the region ‖xt‖2 > D.

The two terms on the right-hand side are the summands of convergent infinite series.
By the quasi-martingale convergence theorem, this shows that ρt converges almost
surely.

We have

〈EMULTI-KRUMt,∇Q(xt)〉 ≥
(
‖∇Q(xt)‖ − η(n, f) ·

√
d · σ(xt)

)
· ‖∇Q(xt)‖

≥ (1− sinα)︸ ︷︷ ︸
>0

·ρt.

This implies that the following infinite series converge almost surely

∞∑
t=1

γt · ρt <∞.

Since ρt converges almost surely, and the series
∑∞
t=1 γt = ∞ diverges, we conclude

that the sequence ‖∇Q(xt)‖ converges almost surely to zero.

We conclude the proof of (i) by recalling the definition of MULTI-KRUM, as the
instance of m−Krum with m = n− f − 2.

3 AGGREGATHOR: Strong Byzantine Resilience and
Slowdown

Let n be any integer greater than 2, f any integer s.t f ≤ n−3
4 and m an integer s.t

m ≤ n− 2f − 2. Let m̃ = n− 2f − 2.

Theorem 2 (Byzantine resilience and slowdown of AGGREGATHOR).
(i) AGGREGATHOR provides strong Byzantine resilience against f failures.
(ii) In the absence of Byzantine workers, AGGREGATHOR has a slowdown (expressed

in ratio with averaging) of Ω(
√

m̃
n).

Proof. (i). If the number of iterations over MULTI-KRUM is n − 2f , then the leeway,
defined by the coordinate-wise distance between the output of BULYAN and a correct

11

gradient is upper bounded by O(1√
d
). This is due to the fact that BULYAN relies on

a component-wise median, that, as proven in [4] guarantees this bound. The proof is
then a direct consequence of Theorem 1 and the properties of Bulyan [4]

(ii) is a consequence of the fact that m-Krum is the average of m estimators of the
gradient. In the absence of Byzantine workers, all those estimators will not only be
from the ”correct cone”, but from correct workers (Byzantine workers can also be in
the correct cone, but in this case there are none). As SGD converges in O(1√

m
), where

m is the number of used estimators of the gradient, the slowdown result follows.

References
[1] BLANCHARD, P., EL MHAMDI, E. M., GUERRAOUI, R., AND STAINER, J. Machine learning with

adversaries: Byzantine tolerant gradient descent. In Neural Information Processing Systems (2017),
pp. 118–128.

[2] BOTTOU, L. Online learning and stochastic approximations. Online learning in neural networks 17, 9
(1998), 142.

[3] EL-MHAMDI, E.-M., AND GUERRAOUI, R. Fast and secure distributed learning in high dimension.
arXiv preprint arXiv: (2019).

[4] EL MHAMDI, E. M., GUERRAOUI, R., AND ROUAULT, S. The hidden vulnerability of distributed
learning in Byzantium. In Proceedings of the 35th International Conference on Machine Learning
(Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018), J. Dy and A. Krause, Eds., vol. 80 of Pro-
ceedings of Machine Learning Research, PMLR, pp. 3521–3530.

[5] HAYKIN, S. S. Neural networks and learning machines, vol. 3. Pearson Upper Saddle River, NJ, USA:,
2009.

[6] MÉTIVIER, M. Semi-Martingales. Walter de Gruyter, 1983.

[7] XIE, C., KOYEJO, O., AND GUPTA, I. Generalized Byzantine-tolerant sgd. arXiv preprint
arXiv:1802.10116 (2018).

12

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How delivered
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	TensorFlow slim
	TensorFlow patches

	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Methodology

	Theoretical Context
	Multi-Krum: Weak Byzantine Resilience and Slowdown
	AggregaThor: Strong Byzantine Resilience and Slowdown

