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ABSTRACT
Detecting objects in a video is a compute-intensive task. In this paper we propose CaTDet, a system to speedup
object detection by leveraging the temporal correlation in video. CaTDet consists of two DNN models that form a
cascaded detector, and an additional tracker to predict regions of interests based on historic detections. We also
propose a new metric, mean Delay(mD), which is designed for delay-critical video applications. Experiments
on the KITTI dataset show that CaTDet reduces operation count by 5.1-8.7x with the same mean Average
Precision(mAP) as the single-model Faster R-CNN detector and incurs additional delay of 0.3 frame. On
CityPersons dataset, CaTDet achieves 13.0x reduction in operations with 0.8% mAP loss.

1 INTRODUCTION

We consider the task of detecting objects in a video. Video
is an important data source for real-world vision tasks such
as surveillance analysis and autonomous driving. Such tasks
require detecting objects in an accurate and efficient manner.

Processing video data is compute-intensive. A $50 camera
can generate 1080p video stream at 25fps, while a $1000
Maxwell Titan X with SSD512 algorithm can only detect
objects at 19 fps (Liu et al., 2016a).

One approach to reducing the computational workload of
video processing is to exploit the temporal and spatial local-
ity of video: treating it as a sequence rather than running
detection on each image separately. For most videos, the
same object appears in adjacent frames(temporal locality)
and in the nearby locations(spatial locality). We can there-
fore exploit this property to make object detection more
efficient.

We propose CaTDet (Cascaded Tracking Detector), a
computation-saving framework for video detection that in-
corporates the tracker into a cascaded system. It is designed
for but not limited to moving-camera delay-sensitive sce-
narios, e.g., autonomous driving. As shown in Figure 1,
CaTDet is a detector cascade with temporal feedback. The
tracker and the inexpensive proposal network extract the
interesting regions in an image, which reduces the workload
on the expensive refinement network.
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For single-image object detection algorithms, various met-
rics such as Average Precision (Everingham et al., 2010)
have been proposed to measure the detection quality. These
metrics do not account for the temporal characteristics of
a video. For many real-world video applications such as
autonomous driving, the metric that matters is delay, the
time from when an object first appears in a video to when it
is detected.

Our contribution in this work is two-fold: the delay met-
ric for object detection in video and CaTDet, a detection
system to efficiently detect objects with the aid of temporal
information. We evaluate CaTDet on KITTI (Geiger et al.,
2012) and CityPersons (Zhang et al., 2017a) datasets, with
both the traditional mAP metric and the new delay metric.
The results show that CaTDet is able to achieve 5.1-8.7x
speed-up with no loss of mAP and only a small increase in
delay.

2 RELATED WORK

Object detection from video. Others have also exploited
the temporal properties of video to improve object detec-
tion. T-CNN (Kang et al., 2016) regularizes detection results
with tracking output. In Detect and Track (Feichtenhofer
et al., 2017), an end-to-end architecture is proposed which
incorporates detection and tracking to improve accuracy.
Both methods require future frames to predict current frame,
therefore they are non-causal. Deep feature flow (Zhu et al.,
2017c) exploits temporal redundancy between neighbor-
ing frames by estimating optical flow with FlowNet (Ilg
et al., 2017). It achieves high speed-ups by skipping feature
extraction for non-key frames. Flow-guided feature aggrega-
tion (Zhu et al., 2017b), on the other hand, tries to improve
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Figure 1. (a) Single-model detector system: the detection model is a CNN model for object detection, such as Faster R-CNN, SSD,
etc. (b) Cascaded detector system: The cheap proposal network scans the whole images and produces potential object candidates to be
calibrated by the Refinement Network. Both the proposal network and the refinement network are detection models, although technically
the proposal network does not need to be. (c) CaTDet: a tracker is further added that incorporates previous frames’ information to aid
detection and save computations.

accuracy by aggregating features from nearby frames. In
(Zhu et al., 2017a), a unified approach of exploiting feature
flow is presented, which improves both the detection accu-
racy and the speed. A similar flow based hardware solution
is proposed in EV A2 (Buckler et al., 2018).

Region extraction and selected execution. For videos
with static backgrounds, only the changing regions require
updates. CBinfer (Cavigelli et al., 2017) filters out mov-
ing pixels by change-based thresholding. In (Zhang et al.,
2017b), foreground extraction methods are employed to ex-
tract regions of interest. However, they do not work in the
general case of a moving camera.

Adaptive/cascaded neural network. Others also use a
system-level approach to improve computation efficiency
of Deep Neural Network. (Chen et al., 2018) proposes a
way to combine sparse expensive detection and dense cheap
detection via a scale-time lattice. In Adaptive Neural Net-
works (Bolukbasi et al., 2017), a system is proposed that
adaptively chooses the parts of a neural network model ac-
cording to the input. SACT (Figurnov et al., 2017) further
develops this work (Bolukbasi et al., 2017) by adaptively
extracting high-probability regions and selectively feeding
these regions into a deeper network. While these works
improve computational efficiency, they are designed for still
image object detection which does not take advantage of
temporal information. NoScope (Kang et al., 2017) pro-
poses a framework with selective processing and cascaded
models that can speedup frame classification in video up to

1000x. However, the task of NoScope is relatively simple
and the input is limited to static background videos.

3 PROPOSED DETECTION SYSTEM

Figure 1 illustrates a single-model detection system, a cas-
caded system, and CaTDet. The single-model system is a
CNN model such as Faster R-CNN (Ren et al., 2015) or
SSD (Liu et al., 2016b). The cascaded model consists of two
detection DNNs, a lightweight proposal network followed
by a higher-precision refinement network. The proposal net-
work selects regions of interest for the refinement network
to reduce computation. Our proposed system, CaTDet, im-
proves on the cascaded system by using a tracker to further
extract regions of interest based on historical objects.

CaTDet works in the following steps. The proposal network,
which may be small and inaccurate, inputs every full video
frame and outputs the potential locations of objects within
the frame. The tracker tracks the history of high-confidence
objects in the current frame and predicts their location in
the next frame. For each frame, the outputs of the proposal
network and the tracker are combined before being fed into
the refinement network, and thereby we obtain the calibrated
object information.

CaTDet is based on the concept that validation and calibra-
tion are easier than re-detection. An object that has been
detected in one video frame is very likely to appear in the
next frame at a nearby location. Based on this prior, run-
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Figure 2. A clip of CaTDet’s execution loop. Each step’s new output is in red, while the output of previous steps is in yellow. (a) Last
frames detections. (b) Locations of the pre-existing objects are predicted by the tracker. Objects leaving the current frame are deleted. (c)
New detections from the proposal network are added. (d) The refinement network performs selected calibration, as shown in the dotted
box. Duplicated detections will be deleted in the NMS step.

ning a high-precision detector on regions around previous
objects saves workload while preserving accuracy. This
simple concept, however, faces two problems in practice:

New objects. It is difficult to predict where new objects
will appear in a new video frame. To detect them requires
scanning the entire image. We use a fast, inaccurate detector,
the proposal network, to locate potential objects. A high
false positive rate of the proposal network may be tolerated,
as we have a more accurate detector to refine the results.
By functionality, the proposal network is very similar to the
region proposal network(RPN) in Faster R-CNN.

Motion and occlusion. The movements of objects or the
camera cause the locations to drift. In some cases due to
occlusion, objects may be temporally invisible. If the re-
finement network simply looks at previous locations, minor
mismatches or temporal misses could lead to permanent
loss. Therefore, we use a tracker as a robust future loca-
tion predictor. For the tracker, standard tracking algorithms
can be directly applied, except that the output is predicted
locations instead of tracklets.

An example of CaTDet’s workflow is given in Figure 2.
Starting with the last frame’s detection results in stage a,
the tracker updates its internal state and predicts the corre-
sponding locations/proposals for the next frame as in stage b.
Together with the proposal net’s outputs in stage c, the pro-
posals are fed into the refinement network to be calibrated.
As shown in stage d, the refinement network operates only
in the regions of interest, thus saves the overall workload.

4 IMPLEMENTATION DETAILS

In this section we present a detailed description of each
module of CaTDet.

4.1 Tracker

In CaTDet, the tracker matches the objects in consecutive
frames, estimates motion information and predicts next-
frame locations. Notice that, the goal of typical object
tracking problem is different, though the algorithm could
be almost the same. Tracking algorithms usually output
tracked sequences of detected objects, and the predicted
locations are intermediate results. The predictions, which
indicate regions of interest, are then fed into the refinement
network.

Our tracking algorithm is inspired by SORT(Simple Online
and Realtime Tracking) (Bewley et al., 2016). In SORT,
two major components are object association and motion
prediction. Object association matches the objects in two(or
more) adjacent frames. Motion prediction uses the states of
existing tracked objects to predict their locations in future
frames. These two steps are executed iteratively for every
new frame.

Object association module employs the modified Hungar-
ian algorithm, just as SORT does, to match objects in two
adjacent frames. For an N-to-M matching problem, we
construct an N-by-M cost matrix of which the elements
are negative Intersect over Union(IoU). For IoUs that are
smaller than a threshold β, the two bounding boxes are
set as non-relevant regardless of Hungarian algorithm’s re-
sults. The output of object association is matched objects,
lost objects (unmatched objects in the previous frame) and
emerging objects (unmatched objects in the new frame).
Notice that this process is performed one time per class.

Motion prediction module employs the simple exponen-
tial decay model instead of the Kalman Filter algorithm
in SORT. It is observed to be more robust to different set-
tings of frame rate and image resolution. For Kalman Filter,
the parameters need to be carefully tuned on the training
dataset (Bewley et al., 2016), while in the decay model they
are set as constants.
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Figure 3. Tracker work flow. The tracker takes as input the current frame’s detected objects (Detections) and outputs the predicted
locations (Predictions) in the next frame. The predicted objects and detected objects of the current frame are matched to update the
internal state (Tracking states), which includes the coordinates, sizes and motions of objects.

In the tracker, the state of an object is represented by two
vectors x = [x, y, s], ẋ = ẋ, ẏ, ṡ] and a scalar r. Here x and
y are the center coordinates, s is the width of the bounding
box and r is the aspect ratio(height to width). The following
update rule is adopted in the tracker:

ẋn+1 = ηẋn + (1− η)(xn+1 − xn) (1)

x′
n+1 = xn + ẋn (2)

r′n+1 = rn (3)

Here x′ and r′ are the predicted values, which are later
converted into bounding box coordinates and fed into the
refinement network. If the object is not matched in the
new frame (missing object), the motion is kept constant for
several frames until it is discarded. For emerging objects,
the motion vector is initialized as 0.

In our implementation, the IoU threshold β is set to 0 and
decay coefficient η to 0.7, although the tracker is robust to a
wide range of η.

The tracker itself operates very efficiently. Our experiments
on KITTI dataset show that it is able to reach 1082fps with
single-thread Intel E5-2620 v4. However, the number of
predicted objects from tracker affects the workload of the
refinement network. We filter out the objects that are too
small(width smaller than 10 pixels) or have been largely
chopped by the boundary. Instead of tracking the missing
objects for a fixed number of frames, an adaptive scheme
is adopted that every match adds to confidence with a up-
per limit and every miss reduces confidence. Once the
confidence value goes below zero, the object is discarded.
Compared with the original tracking algorithm, our tracker
is optimized to reduce the number of predictions to save
total operations of the system.

4.2 Proposal network

The proposal network and the refinement network are ob-
ject detectors that use similar algorithms but have different
sizes and accuracy. The proposal network is much smaller
than the refinement network. Together form a cascaded
detector to save operations. For simplicity, we use Faster
R-CNN (Ren et al., 2015) for both the proposal network and
the refinement network in CaTDet. Faster R-CNN was pro-
posed in 2015, yet still serves as a good baseline detection
framework.

For the proposal network, the standard Faster R-CNN set-
tings are adopted. The image is first processed by a Feature
Extractor that shares the same convolutional layers as the
classifier model. A Region Proposal Network (RPN) pre-
dicts 3 types of anchors with 4 different scales for each
location. After Non-Maximum Suppression (NMS), 300
proposals are selected and fed into the classifier. Our pro-
posal network produces class labels, but they are unused.

Four different types of simple ResNet models are used in
our experiments, including the standard ResNet-18, which
is our largest model.

Table 1. Model specifications for proposal nets. In ResNet-18, all
blocks are repeated 2 times. The number of arithmetic operations
is measured with Faster R-CNN on KITTI dataset, of which the
input image size is 1242x375 and the number of proposals is 300.

ResNet- ResNet- ResNet- ResNet-
18 10a 10b 10c

conv1 64 48 32 24
block1 64(x2) 48 32 24
block2 128(x2) 96 64 48
block3 256(x2) 168 128 96
block4 512(x2) 512 256 192
ops 138.3G 20.7G 7.5G 4.5G
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Figure 4. Compare the inference-time work flows of the standard Faster R-CNN model and the refinement network. (a) Standard Faster
R-CNN detector: the RPN takes the feature maps from the feature extractor and . (b) Faster R-CNN detector for the refinement network:
the proposals from the proposal network and the tracker instruct the feature extractor to only compute features on regions of interest.
Regions of interest is a mask of all proposals over the frame.

4.3 Refinement network

The refinement network runs a modified version of Faster
R-CNN. Two major differences are listed as follows:

Selected regions of features. The proposal network and
the tracker together provide a high-recall region selection,
so the refinement network only requires parts of the fea-
ture maps that are corresponding to the selected regions. A
margin of 30 pixels is appended around the proposals to
maintain enough information for the ConvNet. Here we
are interested in the real number of operations needed to
extract required features, which is platform-independent,
therefore the regions-of-interest are not required to be rect-
angular. Some works (Zhang et al., 2017b) merge regions
into rectangles to maximize the computational efficiency on
GPU.

Reduced number of proposals. The typical number of
proposals from RPN is 300 (Ren et al., 2015). In CaTDet,
however, it is usually much smaller, as we observed that
the proposal network and tracker provide much more accu-
rate proposals than RPN. That helps save computations for
models like ResNet-50, of which the classifier is a relatively
heavy ConvNet.

Apart from its own hyper-parameters, the workload of the
refinement net is also affected by the hyper-parameters of the
tracker and the proposal net. There are two that significantly
affect the inference speed – the confidence thresholds for the
tracker’s input and the proposal network’s output. Due to the
fact that the proposal net and the tracker predict overlapping
proposals, their impact on total system operations is coupled.
Increasing either threshold will decrease the total number
of operations, while run the risk of hurting accuracy.

5 EVALUATION METRICS

We selected two metrics to evaluate our detection results,
mean Average Precision (mAP) and mean Delay(mD).

Detections

False 
Detections

False positivesFalse negativesTrue detections

Frame 0 Frame 1 Frame 2 Frame 3 Frame 4

Figure 5. Illustration of how recall, precision and delay correspond
to ground truth and to detections. One ground-truth object spans
5 frames in this example. There are in total 7 detections (3 true
detections and 4 false positives) and 2 false negatives. Only the
single false negative in Frame 0 counts towards delay. Recall =
3/5. Precision = 3/7. Delay = 1.

Average Precision (AP) is a common metric to measure the
overall quality of detections. It is defined as the integral of
precision over recall, while in practice, precisions at discrete
recall values are selected to approximate the integral. As an
example, in Pascal VOC (Everingham et al., 2010), 11 recall
values ranging from 0 to 1.0 are averaged to calculate AP.
Mean Average Precision is simply the arithmetic mean of all
different classes’ AP values. It is comprehensive enough to
capture a detector’s accuracy regarding the precision-recall
trade-off, which makes it the standard evaluation metric in
most detection benchmarks (Everingham et al., 2010; Deng
et al., 2009; Lin et al., 2014).

mAP is designed in such a way that all detections are
weighed equally, which is the typical case for single im-



CaTDet: Cascaded Tracked Detector for Efficient Object Detection from Video

age detection. However, we argue that not all detections
are equal in the video detection problem. Given detections
of a single object in a video sequence, the first detection
is particularly important as it determines the response time.
For delay-critical scenarios like autonomous driving, it is es-
sential to have a low response time. For applications that are
not sensitive to detection delay, in-sequence detection errors
can be fixed with post-processing (Kang et al., 2016), while
detection errors in the beginning are much more difficult to
fix.

Mean Delay is proposed to emphasize early detection of an
instance. By definition, delay simply means the number of
frames from the beginning frame of an groundtruth object se-
quence to the first frame the object is detected. An example
is given in Figure 5, where the relationship between recall,
precision and delay is illustrated. By averaging the delay
over all classes, we obtain mean Delay(mD). Notice that for
simplicity, the delay metric does not take into consideration
the frame rate of the video steam.

It is easy to define and measure the delay, however, it is
difficult to compare the average delay across different meth-
ods. The reason is that one can always reduce the delay
by detecting as many objects as possible. The AP metric
makes a trade-off between false negatives (recall) and false
positives (precision), while the delay metric only penalizes
false negatives as shown in Figure 5.

To fairly compare the average delay of different methods, we
measure the delay at the same precision level. To be specific,
given a target precision value β, we select the confidence
threshold so that the mean precision of all classes matches
β, thereby measure the average delay for different methods.

mD@β :=
1

|C|
∑
c∈C

Delayc(tβ) , (4)

where C is the set of classes and tβ is chosen as

1

|C|
∑
c∈C

Precc(tβ) = β (5)

The above formula only describes the entry delay. Some
applications may also be sensitive to exit delay, which is
defined as the actual exit frame minus the predicted exit
frame. Due to the fact that entry frame is harder to predict
as no prior knowledge exists, we are focusing on entry delay
throughout this paper.

6 EXPERIMENTS ON KITTI
6.1 Dataset overview

KITTI is a comprehensive dataset with multiple computer
vision benchmarks related with the autonomous driving task.

Out of the available benchmarks, we use the data from the
2d object (detection) benchmark for training and and the
tracking benchmark for evaluation

KITTI’s 2d object benchmark contains 7481 training images.
The tracking benchmark contains 21 training sequences
with a total number of 8008 frames at a frame rate of 10
fps. Overlapping images exist in the 2d object dataset and
tracking dataset, therefore we filtered out the duplicated
images in the training set. After that there are 4383 remained
images. Both the detection and tracking datasets contain a
relatively small number of images, compared with ImageNet
DET (128k images) and MS-COCO (83k images).

Our results on KITTI dataset is evaluated using the official
evaluation codes as described in the KITTI paper (Geiger
et al., 2012). Only Car and Pedestrian classes are evaluated
in accordance to the tracking subset. Following KITTI’s
convention, an overlap of 50% is required for a valid detec-
tion of Pedestrian, while the class Car requires at least 70%.
The open-sourced KITTI development kit can be found via
the following link1.

It should also be noticed that, in the official KITTI evalua-
tion protocol, there are three difficulty levels (Easy, Mod-
erate, Hard). Each difficulty level sets specific thresholds
of bounding box size, occlusion level and truncation for a
valid ground truth. For example, in Easy mode only ground
truth objects that are wider than 40 pixels and fully visible
are evaluated, otherwise they do not count towards false
negatives. In our experiments, we find that the Easy mode
does not distinguish different methods, therefore we do not
show its results in the following sections.

6.2 Training procedure

Due to the fact that the training set is relatively small com-
pared with the common datasets used for Deep Neural Net-
works training, we adopt a 3-stage training pipeline for the
Faster R-CNN models. Similar to other detection frame-
works, our models are first pretrained on the ImageNet clas-
sification dataset. The classification model (all layers minus
the last classifier layer), together with the RPN module, is
then trained on MS-COCO detection dataset. Finally we
finetune the model on the target dataset, which is KITTI in
this case.

Such a complex training pipeline comes with a number of
hyper-parameters. In our experiments, we aim to keep the
settings as simple as possible and ensure that all the models
are fairly compared, therefore we use the default settings for
both ImageNet and MS-COCO pretraining. The ImageNet
pretraining follows the 90-epoch training scheme in PyTorch

1https://s3.eu-central-1.amazonaws.com/avg-
kitti/devkit object.zip

https://s3.eu-central-1.amazonaws.com/avg-kitti/devkit_object.zip
https://s3.eu-central-1.amazonaws.com/avg-kitti/devkit_object.zip
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Table 2. Comparison on KITTI dataset at Moderate and Hard modes, Moderate and Hard. (Res10-a, Res50) stands for ResNet-10a as the
proposal net and ResNet-50 as the refinement net. mD@0.8 indicates that the delay is tested at an average precision of 0.8.

System ops(G) mAP(Moderate) mAP(Hard) mD@0.8(Moderate) mD@0.8(Hard)
Res50, Faster R-CNN 254.3 0.812 0.740 2.6 3.3
Res10a, Res50, Cascaded 43.2 0.807 0.733 3.2 3.8
Res10a, Res50, CaTDet 49.3 0.814 0.740 2.9 3.7
Res10b, Res50, Cascaded 23.5 0.787 0.730 4.7 5.7
Res10b, Res50, CaTDet 29.3 0.815 0.741 3.3 4.1

examples2. The MS-COCO detection training follows the
open-sourced PyTorch implementation of Faster R-CNN3.

When fintuning on KITTI, the same settings as for MS-
COCO are adopted except that we set the number of itera-
tions in proportion to the size of the training set. All models
are trained for 25k iterations.

6.3 Overall results

Table 2 compares mAP, mean Delay and number of oper-
ations between a single-model Faster R-CNN detector, a
cascaded detector and two CaTDet systems with different
configurations. The CaTDet systems have higher mAP com-
pared with the single-model detector while requiring 5.15x
and 8.67x fewer operations. The cascaded systems save
slightly more operations than the CaTDet systems but suffer
a loss of 0.5% to 0.7% mAP. In our later experiments it is
shown that this gap cannot be mitigated even with further
increasing the number of proposals/operations.

Here we only consider the arithmetic operations in convo-
lutional layers and fully-connected layers. The tracker and
the other layers in DNN models are relatively negligible in
terms of either time or operations.

In terms of delay, CaTDet is slightly worse than the single-
model detector. CaTDet-A(proposal net: ResNet-10a; re-
finement net: ResNet-50) incurs an additional delay of
0.3-0.5 frame compared with the single-model Faster R-
CNN detector. An interesting observation is that, CaTDet-
B(proposal net: ResNet-10b; refinement net: ResNet-50)
with a smaller proposal network and fewer operations can
still match the original mAP results. Its delay results are,
however, much worse. It indicates that the delay statistics is
more sensitive to a bad proposal network.

6.4 System analysis

Number of operations break-down. The number of arith-
metic operations for the proposal and refinement networks
are shown in Table 3. We also show a further break-down
of operations in the refinement network. Due to the over-

2https://github.com/pytorch/examples
3https://github.com/ruotianluo/pytorch-faster-rcnn

lap of proposals from the tracker and the proposal net, the
sum of these components is larger than its actual number of
operations.

It is also noticed that with ResNet-10b as proposal net, the
refinement network is already dominant. Therefore, further
reducing the size of the proposal network, like using ResNet-
10c, is not meaningful.

Analysis of the proposal network. We provide an analysis
of the proposal network’s role in CaTDet. Table 4 shows
different choices of the proposal network with their single-
model accuracy and system accuracy. Here ResNet-18 is
listed just for comparison purpose. Due to its large size, it
is never a serious system design choice.

Considering the great differences of the single-model Faster
R-CNN mAP (ranging from 0.542 to 0.687), these four mod-
els provide almost identical mAP (0.740-0.742) when acting
as the proposal net in CaTDet. On the other hand, a better
proposal net makes CaTDet substantially better in the delay
metric. CaTDet with ResNet-18 achieves 16% less delay
compared with ResNet-10c. These observations suggest
that mAP is not sensitive to the choice of the proposal net,
but delay is.

Importance of the refinement network. The refinement
network’s accuracy largely determines the overall accuracy
of CaTDet. As shown in Table 5, CaTDet’s mAP and delay
are very close to the single-model accuracy of the refinement
network. It is also noticed that for a less accurate model
like ResNet-18, the CaTDet system slightly surpasses the
single-model Faster R-CNN, probably due to a better source
of proposals.

Ablation study of the tracker. We study how important
the tracker is in the CaTDet system. The overall results on
KITTI listed in Table 2 seem to indicate that eliminating
the tracker only incurs minor accuracy loss. However, our
experiments show that without the tracker, even if we further
increase the number of proposals from proposal net, the
accuracy drop cannot be compensated.

As shown in Figure 6, in the cases where the tracker exists,
varying the C-thresh makes little difference to mAP. In the
cases without the tracker, none of the cascaded system can
match original mAP except Res-18. Also, the cascaded

https://github.com/pytorch/examples
https://github.com/ruotianluo/pytorch-faster-rcnn
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Table 3. Operation break-down: The refinement network operates on proposed regions from the tracker and the proposal net. Because of
overlaps between these two sources, the two components sum to more than the total number of operations. Unit: Gops.

System Total Total break-down Refinement break-down
Proposal Refinement From tracker From proposal net

Res10a, Res50, Cascaded 43.2 20.7 22.5 / /
Res10a, Res50, CaTDet 49.3 20.7 28.6 11.9 22.5
Res10b, Res50, Cascaded 23.5 7.5 16.0 / /
Res10b, Res50, CaTDet 29.1 7.5 21.8 11.4 16.0

Table 4. Comparison of the accuracy of DNN model as (a) a single
Faster R-CNN model or (b) the proposal network inside CaTDet
system. The refinement net is ResNet-50. mAP and delay are both
tested in KITTI’s Hard mode.

Model Setting mAP mD@0.8 ops(G)

ResNet-18 FR-CNN 0.687 5.9 138
CaTDet(P) 0.742 3.5 163

ResNet-10a FR-CNN 0.606 10.9 20.7
CaTDet(P) 0.740 3.7 49.3

ResNet-10b FR-CNN 0.564 13.4 7.5
CaTDet(P) 0.741 4.0 29.3

ResNet-10c FR-CNN 0.542 15.4 4.5
CaTDet(P) 0.741 4.1 27.3

Table 5. Comparison of the accuracy of CNN model as (a) a single
Faster R-CNN model (b) the refinement network inside CaTDet
system. The proposal net is ResNet-10b. mAP and delay are both
evaluated in KITTI’s Hard mode.

Model Setting mAP mD@0.8 ops(G)

ResNet-18 FR-CNN 0.687 5.9 138
CaTDet(R) 0.696 6.0 24.4

ResNet-50 FR-CNN 0.74 3.3 254
CaTDet(R) 0.741 4.0 39.8

VGG-16 FR-CNN 0.742 4.2 179
CaTDet(R) 0.743 4.4 63.9

system becomes more sensitive to the choices of the pro-
posal network and the output threshold than CaTDet. Here
C-thresh is the output threshold for proposal net. A higher C-
thresh leads to fewer region proposals, reducing the amount
of work for the refinement network.

For the delay metric, both cascaded system and CaTDet
are sensitive to the choice of the proposal network and the
C-threshold. Figure 6 shows that as C-thresh increases, the
average delay gradually increases as well. The main reason
is that not enough proposals are fed into the refinement
network, causing delayed detection of an object sequence.

Additional results in Section 7 further show that removing
the tracker greatly harms the performance of the system.

Visualization of delay-recall correlation Figure 7 illus-
trates the trade-offs of recall vs. precision and delay vs.
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Figure 6. Upper: mean Average Precision(mAP) with varying
thresholds for the proposal network. Lower: mean Delay at a
precision of 0.8(mD@0.8) with varying output thresholds for the
proposal network(C-thresh). In the case without a tracker, the
system is a typical cascaded system.

precision. Recall and delay have a strong correlation as the
precision changes. Due to fewer number of instances in-
volved in delay evaluation, the delay curve is not as smooth
as the recall curve. In this case, pedestrians usually have
smaller bounding boxes, which makes them harder to detect.
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Figure 7. Illustration of how delay, recall correlate with precision.
Upper: class Car; Lower: class Pedestrian. Delay is in unit of
frames.

7 EXPERIMENTS ON CITYPERSONS

7.1 Dataset and training

CityPersons dataset (Zhang et al., 2017a) provides bounding-
boxes level annotations over a subset of CityScapes (Cordts
et al., 2016), which is a popular semantic segmentation
dataset. As its name suggested, only the class Person is
annotated in CityPersons. A total of 35016 bounding boxes
are labeled in 5000 images.

CityPersons consists of 30-frame sequences at a frame rate
of 30 fps and a resolution of 2048x1024. The 20th frame
of every sequence is labelled. At training time, we follow
the 3-stage pipeline as for KITTI. At inference time, the
sparse annotation makes it impossible to evaluate detection
delay. Therefore only mAP is evaluated for the CityPersons
dataset. The detection system runs on the full sequence, but
only the labeled frames are evaluated.

We compute AP for Person class following the evaluation
protocol of Pascal VOC (Everingham et al., 2010). The

official CityPersons benchmark follows the protocol of MS-
COCO (Lin et al., 2014), which measures mAP under 10
different IoUs(Intersection Over Union) ranging from 0.5
to 0.95.

7.2 Results

As the CityPersons dataset is sparsely annotated, we only list
the mAP in Table 6. Due to the fact that frames in CityPer-
sons has much higher resolution than KITTI (2048x1024
vs. 1242x375), the baseline ResNet-50 model has a higher
operation count (597Gops vs. 254Gops).

Table 6 compares the baseline Faster R-CNN model, cas-
caded system and CaTDet. A significant difference between
the results of KITTI and CityPersons is that the cascaded sys-
tem performs substantially worse on CityPersons. For both
configurations shown in the table, eliminating the tracker
reduces the mAP by more than 5%.

On CityPersons, our proposed system is not able to fully
match the original accuracy. CaTDet with a ResNet-10b pro-
posal net and a ResNet-50 refinement net reduces operation
count by 13x while degrading mAP by 0.8%.

Table 6. mAP and number of operations on CityPerson dataset. All
the hyper-parameters are kept the same as in KITTI experiments to
ensure that CaTDet systems are robust across different scenarios.

System mAP ops(G)
Res50 Faster R-CNN 0.674 597
Res10a, Res50, Cascaded 0.611 79.5
Res10a, Res50, CaTDet 0.662 87.4
Res10b, Res50, Cascaded 0.607 39.0
Res10b, Res50, CaTDet 0.666 46.0

8 CONCLUSION

In this paper we proposed a new system for detection from
video and a new delay metric for delay-critical video appli-
cations. On KITTI dataset, the proposed system CaTDet
is able to save arithmetic operations of object detection by
5.1-8.7x with no mAP loss and minor delay overhead. On
CityPersons dataset, CaTDet achieves 13.0x saving with
0.8% mAP loss. In addition, our analysis showed that the
delay correlates with, but not behaves exactly the same as
the recall, therefore requires additional attention for delay-
critical detection system design.
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APPENDIX I: TIMING RESULTS

Though we believe that the number of operations is a more
general metric to be compared across different platforms,
we still list the timing results on the GPU platform for
additional information.

Due to the fact that a GPU is very inefficient at processing
small batches of data, a simple heuristic was used to merge
target regions into a large rectangular area before feeding
proposals into the refinement network. Preliminary experi-
ments show that GPU execution time, T , of a certain CNN
workload, W , could be approximated with a simple linear
model: T = αW +b, where b is estimated to roughly match
the execution time of a 400x400 image. A greedy bounding
box merging algorithm is thereby derived: two bounding
boxes are merged if the merged box has a smaller estimated
execution time than the sum of both. In such a way we
improves GPU execution efficiency at the cost of increasing
the actual workloads.

The experiment is performed on a PC with Maxwell Titan X
GPU and Xeon E5-2620 v4 CPU. Both the overall execution
time and GPU execution time are measured. The“Total” col-
umn shows the average process time for a frame, including
overheads such as data loading and PyTorch’s wrapping.
The “GPU-only” column shows the GPU kernel time, mea-
sured by the NVPROF utility.

Table 7. Measured execution time on GPU platform. ”Total” stands
for the average process time for a frame. ”GPU-only” counts the
GPU kernel time only.

Time(s) Total GPU-only
Res50 Faster R-CNN 0.193 0.159
Res10a-Res50 CaTDet 0.094 0.042

As shown in Table 7, overall execution time is reduced by 2x
and GPU time is reduced by 4x. It should also be noted that
there is still room for improvement for both overall and GPU
time. The CPU time could be hiden by pipelining. GPU
execution efficiency could be further improved by either
better merging algorithms or other techniques like batching
or concatenating small regions.

APPENDIX II: EXPERIMENTS WITH
ONE-SHOT DETECTORS

CaTDet incorporates Faster R-CNN models for both the
proposal network and the refinement network, however, its
design principles can also be applied to other detection
algorithms, including the popular one-shot detectors like
SSD (Liu et al., 2016b), YOLO (Redmon et al., 2016) and
RetinaNet (Lin et al., 2018). In this section, we demonstrate
CaTDet’s efficacy for RetinaNet.

We replace the Faster R-CNN model with RetinaNet as the
role of the refinement network. Similar to Faster R-CNN,
the workload of RetinaNet can be reduced with selected
regions on the original image. RetinaNet only operates at
the regions of interest generated by the proposal network
and the tracker, thereby reduces the number of operations
for both Feature Pyramid Network and Classifier Subnets.

The training procedure of RetinaNet matches that of Faster
R-CNN. We borrowed the code and pretrained model on MS-
COCO from the open-sourced repo4. The model is finetuned
on KITTI for 5 epochs, following the same settings as in
Section 6.2.

Table 8. Comparison between single-model RetinaNet and
RetinaNet-based CaTDet. Both mAP and delay are tested at Mod-
erate difficulty level.

Time(s) ops(G) mAP mD@0.8
Res50-RetinaNet 96.7 0.773 6.53
Res10a,Res50-CaTDet 30.8 0.775 6.33

Results in Table 8 show that the CaTDet system achieves
both better mAP and delay than the single-model RetinaNet
detector, meanwhile reduces the number of operations by
more than 3x. It suggest that CaTDet could serve as a
general framework for CNN-based video detection.

4https://github.com/yhenon/pytorch-retinanet

https://github.com/yhenon/pytorch-retinanet

