
3LC: LIGHTWEIGHT AND EFFECTIVE TRAFFIC COMPRESSION FOR
DISTRIBUTED MACHINE LEARNING

Hyeontaek Lim 1 David G. Andersen 2 Michael Kaminsky 3

ABSTRACT
3LC is a lossy compression scheme for state change traffic in distributed machine learning (ML) that strikes a
balance between multiple goals: traffic reduction, accuracy, computation overhead, and generality. It combines
three techniques—3-value quantization with sparsity multiplication, base-35 encoding, and zero-run encoding—to
leverage the strengths of quantization and sparsification techniques and avoid their drawbacks. 3LC achieves a
data compression ratio of up to 39–107×, preserves the high test accuracy of trained models, and provides high
compression speed. Distributed ML frameworks can use 3LC without modifications to existing ML algorithms.
Our experiments show that 3LC reduces wall-clock training time of ResNet-110 for CIFAR-10 on a bandwidth-
constrained 10-GPU cluster by up to 16–23× compared to TensorFlow’s baseline design.

1 INTRODUCTION

Distributed machine learning (ML) harnesses the aggregate
computational power of multiple worker nodes. The work-
ers train an ML model by performing local computation and
transmitting state changes to incorporate progress made by
the local computation, which are repeated at each training
step. Common metrics of interest in distributed ML include
the accuracy of a trained model and the wall-clock training
time until a model reaches a trained state. To improve train-
ing time, distributed ML must be able to transmit large state
change data quickly and avoid impeding local computation.

The goal of this paper is to apply systems and distributed ML
insights to reduce substantially the amount of data that must
be transmitted between workers during training. The utility
of this approach is twofold. First, even modest reductions in
bandwidth offer practical benefits, such as being able to use
cheaper but slower interconnects that can help reduce costs
even today. Second, we explore the extremes of reduced
bandwidth use for distributed training: Understanding the
achievable tradeoff between accuracy and bandwidth can
help inform the design of future accelerators and clusters in
the rapidly evolving ML ecosystem.

Training on local networks: Recent performance studies

1Google Brain, Mountain View, California, USA; work
started while at Carnegie Mellon University 2Computer Sci-
ence Department, School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, USA 3Intel Labs, Pitts-
burgh, Pennsylvania, USA. Correspondence to: Hyeontaek Lim
<hyeontaek@google.com>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

show that in-datacenter distributed training can demand
more bandwidth than datacenter networks and GPU in-
terconnects currently offer, identifying transmitting state
changes as a major bottleneck in distributed ML (Strom,
2015; Alistarh et al., 2017; Wen et al., 2017; Zhang et al.,
2017; Lin et al., 2018; Peng et al., 2018). Even high-
bandwidth networks (e.g., 50 Gbps) can be insufficient for
multi-tenant distributed training (Hazelwood et al., 2018).

Training on wide-area networks: Large-scale deployment
of distributed ML often require the workers to communi-
cate over a low-bandwidth wide-area network (WAN) for
multi-datacenter distributed training or to conform to local
laws that regulate transferring sensitive training data (e.g.,
personal photos) across regulatory borders (Vulimiri et al.,
2015; Cano et al., 2016; European Commission, 2016; Hsieh
et al., 2017; KPMG, 2017). Some data might be pinned to
mobile devices (Konečnỳ et al., 2016; Hardy et al., 2017;
McMahan et al., 2017), forcing distributed ML to use a slow
and sometimes metered wireless network.

Following current hardware trends, the burden on commu-
nication will likely become heavier in future distributed
ML. High-end GPUs’ deep-learning performance measured
in FLOPS (floating point operations per second) has in-
creased by 25× between 2013 and 2018 (Nvidia Inside
Pascal; Nvidia Tesla V100), while their interconnect band-
width has increased by “only” 15× in the same period of
time (Nvidia NVLink). With faster processors, distributed
ML generates more state changes to transmit, but the net-
work bandwidth may not grow fast enough to serve the
increased state change traffic, aggravating distributed ML’s
network bottleneck problem.

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

Communication reduction aims to mitigate the network bot-
tleneck by reducing the overall communication cost. In
particular, lossy compression schemes reduce the volume
of state change data by prioritizing transmission of impor-
tant state changes (Ho et al., 2013; Li et al., 2014; Abadi
et al., 2016; Hsieh et al., 2017). Unfortunately, existing
schemes suffer one or more problems: They reduce network
traffic only slightly, sacrifice the accuracy of the trained
model, incur high computation overhead, and/or require
modifications to existing ML algorithms.

We present 3LC (3-value lossy compression), a lightweight
and efficient communication reduction scheme. 3LC bal-
ances between traffic reduction, accuracy, computation over-
head, and generality, to provide a low-barrier solution for
bandwidth-constrained distributed ML. Our design (1) uses
only 0.3–0.8 bits for each real-number state change on av-
erage (i.e., reduces traffic by 39–107× from original 32-bit
floating point numbers), (2) causes small or no loss in accu-
racy when using the same number of training steps, (3) adds
low computation overhead, and (4) runs with unmodified
ML algorithms.

To achieve both high efficiency and high quality for dis-
tributed ML, 3LC unifies two lossy compression approaches
commonly used for communication reduction: Quantization
encodes state changes in low resolution, and sparsification
sends only the likely important parts of state changes. We
realize both mechanisms in a lightweight-yet-effective lossy
compression scheme. We exploit domain knowledge on
distributed ML that most state change values are close to
zero: A quantization scheme that can represent zero and has
very low resolution would produce many consecutive zero
values, and such sparsity can be easily encoded by a simple
and fast lossless compression technique.

3LC combines three techniques: 3-value quantization
with sparsity multiplication is a lossy transformation that
maps each floating-point number representing a state change
onto three values {−1, 0, 1}, with a knob that controls the
compression level. Base-35 encoding is a lossless transfor-
mation that folds each group of five 3-values into a single
byte. Zero-run encoding is a lossless transformation that
shortens consecutive runs of common bytes (groups of five
zero values) that are abundant in base-35-encoded data.

Our empirical evaluation of 3LC and prior communication
reduction techniques on our 10-GPU cluster shows that 3LC
is more effective in reducing traffic while preserving high
accuracy at low computation overhead. When training im-
age classifiers based on ResNet-110 (He et al., 2015) for the
CIFAR-10 dataset (Krizhevsky, 2009), 3LC reduces training
time to reach similar test accuracy by up to 16–23× under
severe network bandwidth constraints. To measure 3LC’s
practical performance gains over a strong baseline, we use a
distributed training implementation on TensorFlow (Abadi

et al., 2016; Yu et al., 2018) that is already optimized for
efficient state change transmission.

2 DISTRIBUTED ML BACKGROUND

Machine learning (ML) is a resource-heavy data process-
ing task. Training a large-scale deep neural network
(DNN) model may require tens of thousands of machine-
hours (Chilimbi et al., 2014). Distributed ML reduces the
total training time by parallelization.

The parameter server architecture is a common distributed
training design (Ho et al., 2013; Chilimbi et al., 2014; Li
et al., 2014; Cui et al., 2016). Parameter servers, or sim-
ply servers, store a part of the model, which consists of
parameters (trainable variables). Workers keep a local copy
of the model and training dataset. The parameters (and
their state changes) are often represented as a set of tensors
(multidimensional arrays).

The workers train the model by repeatedly performing local
computation and state change transmission via the servers.
Each training step includes the following sub-steps: For-
ward pass: The workers evaluate a loss function for the
current model using the local training dataset. Backward
pass: The workers generate gradients that indicate how the
model should be updated to minimize the loss function. Gra-
dient push: The workers send the gradients to the servers.
Gradient aggregation and model update: The servers aver-
age the gradients from the workers and update the global
model based on the aggregated gradients. Model pull: The
workers retrieve from the servers model deltas that record
the model changes, and apply the deltas to the local model.

Distributed ML may observe two types of communication
costs: training step barriers and state change traffic.

2.1 Relaxing Barriers

One important pillar of distributed ML research is how to
perform efficient synchronization of workers using barriers.
Although relaxing barriers is not the main focus of our
work, we briefly describe related techniques because modern
distributed ML systems already employ these optimizations
to partially hide communication latency.

In vanilla bulk synchronous parallel (BSP), workers train on
an identical copy of the model (Valiant, 1990). BSP forces
the servers to wait for all workers to push gradients, and
the workers to wait for the servers to finish updating the
global model before model pulls. In this model, slow or
failed workers (“straggler”) (Recht et al., 2011; Ho et al.,
2013) make other workers waste computation resources,
increasing training time.

To mitigate the straggler problem, researchers have capi-
talized upon the property that stochastic gradient descent

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

Push

Compressed gradients

Gradients

Decompressed gradients

Aggregated gradients

Server

Workers

Server

Pull

Decompressed model deltas

Compressed model deltas

Workers

Model deltas

Updated local model

Figure 1. Point-to-point tensor compression for two example layers in 3LC (left: gradient push; right: model pull).

and its variants commonly used in distributed ML tolerate
a small amount of inconsistency in the model across the
workers (Recht et al., 2011). Asynchronous state change
transmission permits a worker to submit an update based on
a stale version of the model (Recht et al., 2011). Approaches
such as stale synchronous parallel make a compromise be-
tween two extremes by limiting the staleness of the model
for which an update is calculated (Ho et al., 2013).

A downside of asynchronous state change transmission is
that it may accomplish less useful work per training step be-
cause of desynchronized local models. Asynchronous state
change transmission generally requires more training steps
than BSP to train a model to similar test accuracy (Recht
et al., 2011; Ho et al., 2013; Li et al., 2014; Abadi et al.,
2016; Hsieh et al., 2017). Thus, recent distributed ML
frameworks often advocate synchronous state change trans-
mission while using other techniques to mitigate stragglers.
For instance, TensorFlow’s stock distributed training im-
plementation, SyncReplicasOptimizer, uses backup
workers: A global training step can advance if a sufficient
number of updates to the latest model have been generated
regardless of the number of unique workers that calculated
the updates (Chen et al., 2016).

Modern distributed ML frameworks split barriers into more
fine-grained barriers that help hide communication latency.
For example, Poseidon pushes individual layers’ gradients,
allowing the servers to update part of the model and let the
workers pull that part instead of having to wait for the entire
model to be updated (Zhang et al., 2017). TensorFlow’s
SyncReplicasOptimizer pulls updated model data
for individual layers as they are evaluated in the forward
pass. Such fine-grained barriers facilitate overlapping com-
munication and computation and improve computational
efficiency of distributed ML.

2.2 Compressing State Change Traffic

Relaxed barriers reduce communication costs, but do not
completely hide communication latency. Gradient pushes
and model pulls are sensitive to the available network band-

width, as these steps need to transmit large data quickly,
and state change transmission can take longer as the model
size grows and/or the network bandwidth is more con-
strained (Alistarh et al., 2017; Hsieh et al., 2017; Wen et al.,
2017; Zhang et al., 2017; Lin et al., 2018). If the transmis-
sion takes excessive time, cluster nodes experience long
stall time, harming the efficiency of distributed learning.

Quantization and sparsification reduce network traffic by
applying lossy compression to the state change data. They
prioritize sending a small amount of likely important state
change information and defer sending or even discard the
other information. Quantization uses low-resolution val-
ues to represent the approximate magnitude of the state
change data (Seide et al., 2014; Alistarh et al., 2017; Wen
et al., 2017; Wu et al., 2018). Sparsification discovers state
changes with large magnitude and transmits a sparse ver-
sion of tensors containing only these state changes (Li et al.,
2014; Wei et al., 2015; Watcharapichat et al., 2016; Aji &
Heafield, 2017; Hardy et al., 2017; Hsieh et al., 2017; Fang
et al., 2018; Lin et al., 2018).

Note that the quantization and sparsification we discuss
in this paper differ from model compression (Han et al.,
2016; Jouppi et al., 2017; Lin et al., 2017; Venkatesh et al.,
2017). Model compression reduces the memory requirement
and computation cost of DNN models by quantizing and
reducing their parameters (not state changes). Inference with
a compressed model can run faster without demanding as
much computation and memory resources. In contrast, our
paper focuses on distributed training of a model that consists
of full-precision parameters, which can be processed using
model compression after training finishes.

3 DESIGN

The design goal of 3LC is to strike a balance between traffic
reduction, accuracy, computation overhead, and generality.

3LC is a point-to-point tensor compression scheme. Figure 1
depicts how 3LC compresses, transmits, and decompresses
state change tensors for two example layers. One compres-

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

sion context encompasses the state for compression and
decompression of a single tensor that represents gradients
(a push from a worker to a server) or model deltas (a pull
from a server to a worker) of a single layer in a DNN.

This point-to-point design preserves the communication pat-
tern of existing parameter server architectures. It adds no
extra communication channels between servers or work-
ers because it involves no additional coordination between
them. Some designs (Wen et al., 2017) synchronize their
compression parameters among workers before actual traf-
fic compression, which adds round trips to communication
between the workers for each training step.

A potential performance issue of this point-to-point com-
pression is redundant work during model pulls. Servers
send identical data to workers so that the workers update
their local model to the same state. If the servers compress
individual pulls separately, they would perform redundant
compression work. 3LC optimizes model pulls by sharing
compression: Each server compresses model deltas to make
a shared local copy that multiple workers may pull. Note
that distributed ML frameworks that allow loosely synchro-
nized local models on workers (Recht et al., 2011; Ho et al.,
2013; Li et al., 2014; Hsieh et al., 2017) may require mul-
tiple copies of compressed model deltas, each of which is
shared by a subset of the workers with the same local model.

3LC’s tensor compression and decompression combines one
lossy and two lossless transformations: 3-value quantization
with sparsity multiplication (Section 3.1), base-35 encoding
(Section 3.2), and zero-run encoding (Section 3.3).

3.1 3-value Quantization with Sparsity Multiplication

3-value quantization compresses a state change tensor by
leveraging the distribution of state changes that are cen-
tered around zero and only a few state changes are far from
zero (Wen et al., 2017). It transforms a full-precision input
tensor into a new tensor of three discrete values {−1, 0, 1}
that has the same shape (dimensions) as the input tensor, and
a full-precision scalar m that is the maximum magnitude of
the input tensor values scaled by a sparsity multiplier s.

3-value quantization uses simple computation. For an input
tensor Tin, the quantization output Tquantized is computed by
round(Tin/m), where m = max(|Tin|) · s. The dequantiza-
tion output Tout is m · Tquantized.

s controls the compression level of 3LC. s = 1 is the de-
fault multiplier that preserves the maximum magnitude of
values in the input tensor across quantization and dequan-
tization. A larger s (1 < s < 2) makes the quantization
output sparser (more zeros) because the magnitude of more
values is smaller than m/2. The sparser output contains
less state change information, but can be compressed more
aggressively by zero-run encoding (Section 3.3).

Input Error accumulation buffer

(2) 3-value quantization with
 sparsity multiplication

(3) Base-35 encoding

(4) Zero-run encoding

(a) Local dequantization

+

(b) Assignment

m=0.3

-.1 .1 -.2 0

.2 -.1 -.1 -.1

0 0 0 .1

0 .1 -.1 0

-.1 0 -.2 0

.3 -.1 0 -.1

-.1 0 0 .1

0 .1 -.1 -.1

-.3 .1 -.4 0

-.2 0 -.2 -.1

.1 -.4 .1 .3

0 .3 -.2 0

113 121 121 121

0 0 -1 0

1 0 0 0

0 0 0 0

0 0 0 0

-.3 .1 -.4 0

-.2 0 -.2 -.1

.1 -.4 .1 .3

0 .3 -.2 0

0 0 -.3 0

.3 0 0 0

0 0 0 0

0 0 0 0

0 -.1 0 0

.1 0 .1 0

-.1 0 0 0

0 0 0 -.1

(1) Accumulation

–

113 244

Output

m=0.3

m=0.3

Figure 2. Tensor compression in 3LC.

Quantization followed by dequantization returns a slightly
different tensor from the input tensor, causing quantization
errors. 3LC can experience relatively larger quantization
errors especially when s is larger because dequantization
can make a value farther from its original value (but within
a certain limit to ensure convergence).

3LC corrects quantization errors using error accumulation
buffers (Seide et al., 2014; Wei et al., 2015; Watcharapichat
et al., 2016; Aji & Heafield, 2017; Hsieh et al., 2017; Stich
et al., 2018; Wu et al., 2018). It allows quantization errors
to occur in the first place, but attempts to correct them in
subsequent training steps. It keeps per-tensor local buffers
to remember cumulative errors across training steps.

Figure 2 depicts 3-value quantization with error accumu-
lation, using s = 1. Step (1) accumulates the input tensor
into a local buffer. Step (2) applies 3-value quantization to
the sum. Step (a) dequantizes the quantized data locally.
Step (b) calculates remaining quantization errors and stores
them in the local buffer.

3LC keeps a maximum absolute error smaller than the max-
imum magnitude of the input tensor at each training step.
round() has a maximum absolute error of 1/2. By the
definition of Tquantized and Tout, a maximum absolute error
max(|Tin − Tout|) ≤ m/2. Because of the definition of m
and 1 ≤ s < 2, m/2 < max(|Tin|).

The size of error accumulation buffers is proportional to the
model size. The buffers can be pinned to less expensive host

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

memory and streamed to GPUs only when they are accessed.
Compressing error accumulation buffers to further reduce
memory costs is an interesting direction for future research.

Alternative quantization techniques: Stochastic quanti-
zation outputs randomized quantization values whose ex-
pectation matches their input value (Alistarh et al., 2017). It
eliminates biases that exist in deterministic rounding. For
instance, TernGrad (Wen et al., 2017) uses three values for
quantization similarly to 3-value quantization (without the
sparsity multiplication), but uses stochastic selection of out-
put values. We decided to use error accumulation buffers
and deterministic quantization instead of stochastic quanti-
zation for several reasons: (1) Biases from non-stochastic
quantization can be corrected over time by using error ac-
cumulation buffers. (2) When used alone, error correction
with error accumulation buffers achieves better accuracy
than stochastic quantization in our evaluation (Section 4);
designs using stochastic quantization require more bits for
quantization (Alistarh et al., 2017) or additional accuracy-
compensation techniques (Wen et al., 2017) for high accu-
racy. This result is consistent with prior work comparing
error accumulation and stochastic quantization for gradient
compression (Stich et al., 2018). (3) Using both error accu-
mulation buffers and 3-value stochastic quantization caused
training to fail to converge in our experiments. Combining
them can require scaling accumulated errors by 0.1× when
adding the errors to the input tensor (Wu et al., 2018), which
greatly limits the maximum amount of correctable errors
per training step.

Squared quantization error minimization is a determinis-
tic method that picks magnitude values that minimize the
squared sum of quantization errors. For instance, 1-bit
stochastic gradient descent maps non-negative values and
negative values of an input tensor into two values {0, 1},
and each of these two values are dequantized using a differ-
ent m value that is the average of non-negative or negative
values in the input tensor (Seide et al., 2014). In designing
3LC, we avoid reducing the magnitude of quantized values
instead of pursuing minimum squared quantization errors
because (1) minimizing quantization errors does not neces-
sarily minimize accuracy loss in empirical evaluation (Sec-
tion 4), and (2) other quantization techniques also preserve
the approximate magnitude of input tensors for better em-
pirical accuracy even though doing so may provide weaker
theoretic guarantees (Alistarh et al., 2017; Wu et al., 2018).

Alternative sparsification techniques: The sparsity mul-
tiplier plays a role similar to the threshold knob in
sparsification-based compression techniques (Hardy et al.,
2017; Hsieh et al., 2017; Lin et al., 2018). Both affect
how many distinct state changes are chosen for transmis-
sion. However, thresholding makes a decompressed tensor
have much smaller average values than the input tensor by

omitting many input values (even though they are small);
aggressive thresholding can result in lower accuracy, and
compensating for it requires changing ML algorithms such
as modified learning rate calculation (Hardy et al., 2017)
or custom momentum calculation (Lin et al., 2018) that is
specific to “allreduce”-style gradient-only traffic and does
not generalize well to non-gradient data transmission such
as model pulls. In contrast, dequantization using sparsity
multiplication enlarges (now scarcer) large values, better
preserving the average magnitude of the input tensor.

3.2 Base-35 Encoding

Compactly encoding 3-values is nontrivial because CPU and
GPU architectures do not provide native data types for base-
3 numbers. The space requirement of a simple encoding
for 3 discrete values using 2 bits (Wen et al., 2017) is larger
than the theoretic minimum of log2 3 ≈ 1.585 by 26%.

Base-35 encoding is a fixed-length representation for a 3-
value quantized tensor. It takes five 3-values and packs
them into a single byte [Figure 2 Step (3)], using 1.6 bits
per 3-value, which is only 0.95% higher than the theoretic
bound. Base-35 encoding exploits the fact that an expression
a · 34 + b · 33 + c · 32 + d · 3+ e has only 35 = 243 distinct
values (≤ 256) if a, . . . , e ∈ {0, 1, 2}. One way to perform
base-35 encoding is as follows (decoding reverses encoding
steps): (1) Element-wise add 1 to the 3-value quantized
tensor. (2) Type cast it to an unsigned 8-bit integer tensor.
(3) Flatten it into a 1-D array. (4) Pad it with zeros to make
its length a multiple of 5. (5) Partition the array into 5 equal-
sized arrays P0, . . . , P4, and compute P0 · 34 + P1 · 33 +
P2 · 32 + P3 · 3 + P4.

These steps can be easily vectorized on CPUs and GPUs
using common operations provided by ML frameworks.

3.3 Zero-run Encoding

The input to base-35 encoding is sparse (even though the
data structure is dense), containing a large number of zeros.
The number of zeros increases as the sparsity multiplier s
increases. Although base-35 encoding is compact, it always
generates a fixed-length representation, which does not take
advantage of the sparseness in the input.

Zero-run encoding is a variant of run-length encod-
ing (Robinson & Cherry, 1967), but is specialized to base-
35–encoded data. Observe that base-35 encoding maps a
group of five zero values from the 3-value quantized tensor
into a byte value 121. Also recall that base-35 encoding
only outputs byte values of 0–242. Zero-run encoding
finds a run of 121 and replaces it with a new byte value be-
tween 243 and 255, inclusive [Figure 2 Step (4)]. In other
words, k consecutive occurrences of 121 (2 ≤ k ≤ 14) are
replaced with a single byte value of 243+(k-2).

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

Our experience with 3LC thus far is that applying zero-
run encoding to multiple tensors in parallel suffices (e.g.,
from different layers or parallel towers in a DNN). We
sketch below how a parallel version of zero-run encoding
can operate on large tensors.

Parallel compression divides the input tensor into partitions,
encoding each one with the serial zero-run encoding algo-
rithm in parallel, and combines the compressed partitions
by conditionally coalescing their boundaries. If the last
byte of a compressed partition and the first byte of the sub-
sequent compressed partition are byte values representing
zeros (121) or a zero-run length (243–255), these two
bytes can become a single byte if the total zero-run length is
between 2 and 14. Parallel decompression simply partitions
the compressed tensor, decodes each partition in parallel,
and concatenates the decoded partitions.

Compared to general-purpose compression algorithms or
entropy coding schemes (Gailly & Adler, 2013; Øland &
Raj, 2015; Alistarh et al., 2017), zero-run encoding is sim-
pler to vectorize and requires no preprocessing by avoiding
unaligned bit-level operations and table lookups.

4 EVALUATION

We experimentally evaluate 3LC to quantify its effective-
ness against other communication reduction schemes. Our
experiments investigate multiple aspects: traffic reduction,
wall-clock training time reduction, test accuracy, conver-
gence speed, and computation overhead.

4.1 Implementation

We implement a prototype of 3LC on TensorFlow. 3-value
quantization with sparsity multiplication and base-35 encod-
ing use TensorFlow’s built-in vectorized operators. Zero-run
encoding uses custom operators written in C++.

Our prototype includes a distributed optimizer that retains
the interface of SyncReplicasOptimizer, which is
TensorFlow’s stock distributed training implementation.
The distributed optimizers augment any local optimizer with
distributed training by providing gradient aggregation and
training step barriers. To replicate TensorFlow’s tensor
caching and incremental pull behavior that copies each re-
mote tensor into a local cache before local access to that
tensor, our prototype ensures that first-time access to a ten-
sor at each training step executes extra operators that pull,
decompress, and apply model deltas to the tensor.

4.2 Compared Designs

Our evaluation compares representative communication
reduction schemes that we implement on TensorFlow:
32-bit float is the baseline that transmits 32-bit

floating-point state changes without compression. 8-bit
int is 8-bit quantization with error accumulation. Our im-
plementation uses 255 distinct values, [−127, 127], leaving
−128 unused. Stoch 3-value b-3-5 uses a stochas-
tic version of 3-value quantization similar to that of Tern-
Grad (Wen et al., 2017) without “gradient clipping,” and
our base-35 encoding for 1.6-bit quantization, which is
smaller than TernGrad’s 2-bit quantization. MQE 1-bit
int performs 1-bit quantization with minimum squared
quantization errors and error feedback (Seide et al., 2014).
5% sparsification chooses 5% of the largest state
changes in each tensor and accumulates unsent changes in
buffers for later transmission, which performs the common
tensor sparsification (Li et al., 2014; Wei et al., 2015; Aji
& Heafield, 2017; Hardy et al., 2017; Hsieh et al., 2017;
Fang et al., 2018; Lin et al., 2018). Note that 5% corre-
sponds to 1.6 (bits) / 32 (bits). We use the magnitude, not
relative magnitude, of values to find largest changes for
better test accuracy in our experiments. To avoid exhaus-
tive sorting while finding a threshold, we only sort sampled
input values (Aji & Heafield, 2017). Our prototype uses a
bitmap to indicate which state changes sparsification has
selected, which adds 1 bit per state change as traffic over-
head regardless of the input tensor size. 2 local steps
transmits state changes every 2 local steps. Unsent updates
are accumulated locally and sent at the next training step.
It reduces the traffic almost by half and effectively doubles
the global batch size of distributed training. 3LC is the full
3LC design with empirically chosen sparsity multipliers:
s ∈ {1.00, 1.50, 1.75, 1.90}.

Similar to prior work (Alistarh et al., 2017), we exclude state
changes for small layers—in our experiments, batch normal-
ization layers (Ioffe & Szegedy, 2015)—from compression
because avoiding computation overhead far outweighs com-
pacting already small tensors.

Note that the implementation of some compared designs are
not identical to prior proposed designs because their design
is incompatible with our workload and the TensorFlow pa-
rameter server architecture. Sparsification does not
use modified learning rate or momentum calculation (Hardy
et al., 2017; Lin et al., 2018) because TensorFlow sends
not only gradients, but also model deltas to which their
modifications of ML algorithms are inapplicable directly.

4.3 Evaluation Setup

Workload: Our experiments train image classifiers based
on ResNet-110 (He et al., 2015) for the CIFAR-10
dataset (Krizhevsky, 2009). CIFAR-10 contains 50,000
training images and 10,000 test images, each of which has
one of 10 labels. ResNet-110 is a 110-layer convolutional
neural network (CNN) for CIFAR-10.

Our evaluation focuses on CNN training because it is by far

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

the most common non-convex optimization problem used
in recent work (Watcharapichat et al., 2016; Alistarh et al.,
2017; Hardy et al., 2017; Hsieh et al., 2017; Wen et al.,
2017; Zhang et al., 2017; Lin et al., 2018; Wu et al., 2018).
In particular, we choose to train a ResNet, which is both a
representative and challenging workload for communication
reduction schemes to show their performance benefits. The
ResNet architecture’s “identity mappings” are commonly
found in high-accuracy neural network architectures (Zoph
et al., 2017). Compared to earlier neural network architec-
tures such as VGG (Simonyan & Zisserman, 2014), ResNet
models typically have small parameter count to computa-
tion ratios (Fang et al., 2018), generating less state change
traffic for the same amount of communication. Its very deep
network structure permits efficient incremental transmis-
sion of state changes (Section 2.1), facilitating overlapping
computation and communication and hiding communication
latency. Therefore, we believe that performance gains on
the ResNet architecture are likely to transfer to other neural
network architectures.

Training configuration: We reuse the local optimizer type
and hyperparameters for ResNet-110 training from the orig-
inal ResNet paper (He et al., 2015) except for the learning
rate schedule. The local optimizer is stochastic gradient
descent with a momentum of 0.9. The weight decay is
0.0001. We vary the learning rate from 0.1 to 0.001, fol-
lowing the original learning rate range, but we use cosine
decay without restarts (Loshchilov & Hutter, 2017) instead
of the stepwise decay because the cosine decay achieves
better accuracy and has fewer hyperparameters to tune. We
apply the standard data augmentation that randomly crops
and horizontally flips original images to generate training
examples (He et al., 2015).

Our distributed training configuration follows the guideline
for large-batch stochastic training (Goyal et al., 2017). We
scale the learning rate proportionally to the worker count
and make one worker responsible for updating batch nor-
malization parameters. We use a per-worker batch size of
32 images; using the original batch size of 128 reduces accu-
racy for all designs because it produces a large global batch
size of 1,280 on a 10-worker cluster. Our accuracy matches
or exceeds the accuracy of a ResNet-110 trained using a
similar batch size but stepwise decay (Lin et al., 2018).

Hardware and network: Our distributed training runs on
a GPU cluster. It uses 10 workers, each with a single GPU;
each pair of workers shares a physical machine equipped
with two Intel R© Xeon R© E5-2680 v2 CPUs (total 20 physi-
cal cores), 128 GiB DRAM, and two Nvidia GTX 980 GPUs.
Our experiments use numactl for CPU and memory isola-
tion between worker pairs and CUDA VISIBLE DEVICES
for a dedicated per-worker GPU. A separate machine acts as
a parameter server. We use the Linux Traffic Control (linux-

tc) on all nodes to emulate constrained network bandwidth.

Measurement methodology: A dedicated node reads the
snapshot of the global model and calculates the top-1 score
of the test images as test accuracy.

To reduce computation resource use, we divide the exper-
iments into two categories of full measurement and accel-
erated measurement. Full measurement measures training
time, average per-step training time, and accuracy on 1 Gbps
by executing standard training steps (163.84 epochs (He
et al., 2015); equivalent to 25,600 steps for 10 workers with
a batch size of 32). Accelerated measurement only obtains
average per-step time on 10 Mbps and 100 Mbps links by
executing 100 and 1000 steps, respectively (about 1 hour
of training for 32-bit float); one exception is that any
design with zero-run encoding runs 10% of standard train-
ing steps to faithfully reflect its compression ratios changing
over time. The learning rate schedule uses adjusted training
steps as the total training steps (as usual) to ensure each
training run to sweep the entire learning rate range.

We predict the training time on 10 Mbps and 100 Mbps by
scaling the training time from the 1 Gbps full measurement
based on per-step training time differences between full and
accelerate measurement results while reusing the accuracy
from the full measurement. Suppose a full measurement re-
sult for 1 Gbps is training time of tfull, per-step training time
of sfull, and an accelerated measurement result for 10 Mbps
is per-step training time of sshort. We estimate the training
time of 10 Mbps to be tfull · sshort/sfull. We take test accu-
racy obtained in the full measurement as-is because network
bandwidth changes do not affect test accuracy. Without
training time extrapolation, obtaining a single datapoint on
a slow network takes approximately 10 days on our cluster,
which would make it hard for us to compare many designs
extensively at high confidence.

We show the average of measurement results from multiple
independent runs. Each configuration is run 5 times for full
measurement, and 3 times for accelerated measurement.

4.4 Macrobenchmark

We examine the tradeoff between total training time and
accuracy of compared schemes. Each datapoint on the graph
represents a separate experiment configuration; the learning
schedule (the cosine decay) depends on total training steps,
requiring a new experiment for accuracy measurement for a
different number of total training steps.

Table 1 summarizes training time speedups over the baseline
and test accuracy when using standard training steps. 3LC
achieves the best speedup across all network configurations,
and its accuracy remains similar to the baseline, except 3LC
(s=1.90), which performs aggressive traffic compression.
Other designs require longer training or harm accuracy.

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

Table 1. Speedup over the baseline and test accuracy using standard training steps.

Design Speedup (×) @ 10 Mbps @ 100 Mbps @ 1 Gbps Accuracy (%) Difference

32-bit float 1 1 1 93.37
8-bit int 3.62 3.47 1.51 93.33 −0.04
Stoch 3-value b-3-5 12.3 7.51 1.53 92.06 −1.31
MQE 1-bit int 14.6 7.40 1.30 93.21 −0.16
5% sparsification 8.98 6.62 1.44 92.87 −0.50
2 local steps 1.92 1.87 1.38 93.03 −0.34
3LC (s=1.00) 15.9 7.97 1.53 93.32 −0.05
3LC (s=1.50) 20.9 8.70 1.53 93.29 −0.08
3LC (s=1.75) 22.8 9.04 1.53 93.51 +0.14
3LC (s=1.90) 22.8 9.22 1.55 93.10 −0.27

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

32-bit float
8-bit int
Stoch 3-value b-3-5
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)
3LC (s=1.75)

0 2000 4000 6000 8000 10000 12000 14000
Total training time (minutes)

0
88

89

90

91

92

93

94
Te

st
 a

cc
ur

ac
y

(%
)

32-bit float
8-bit int
Stoch 3-value b-3-5
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)
3LC (s=1.75)

0 200 400 600 800 1000 1200 1400
Total training time (minutes)

0
88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

32-bit float
8-bit int
Stoch 3-value b-3-5
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)
3LC (s=1.75)

0 25 50 75 100 125 150 175
Total training time (minutes)

0

Figure 3. Training time and test accuracy with a varied number of training steps (left: 10 Mbps; center: 100 Mbps; right: 1 Gbps).

Figure 3 (left) plots total training time and final test accuracy
on 10 Mbps when varying the total number of training steps
to 25%, 50%, 75%, and 100% of standard training steps.
An experiment using 100% training steps gives the accuracy
of fully trained models, while using fewer training steps
indicates the convergence speed of a design.

The result shows that designs that achieve high accuracy
with many training steps do not always yield high accuracy
with fewer training steps. 3LC (s=1.75) provides the
best training time and maintains high accuracy when using
100% training steps because of its effective traffic compres-
sion. When using fewer training steps, 3LC (s=1.00)
achieves better accuracy. 3LC’s sparsity multiplication af-
fects tradeoffs between traffic reduction and convergence
speed, but it does not necessarily harm accuracy obtained us-
ing sufficient training steps (e.g., executing as many training
steps as standard no-compression training uses).

Note that Stoch 3-value b-3-5 has lower accuracy
than 3LC. This accuracy loss by stochastic quantization
supports our design decision of using error accumulation
buffers to correct quantization errors.

With a faster network of 100 Mbps, Figure 3 (center) shows
that the benefit of reducing traffic begins to diminish and
preserving high accuracy becomes important. For example,
5% sparsification now provides always better time-
to-accuracy than Stoch 3-value b-3-5.

On a 1 Gbps network, maintaining high accuracy and low
computation overhead becomes even more important. Fig-
ure 3 (right) shows the time vs. accuracy curves using this
network. When training to high accuracy, 3LC equals the
accuracy of standard training using less time than other
designs. For runs that do not aim to achieve the highest
accuracy (and, thus, produce results faster), 8-bit int
achieves slightly better accuracy-per-time, though 3LC is a
close second. In contrast, MQE 1-bit int is slower in
time-to-accuracy than 8-bit int, despite using much
less network bandwidth; the long training time of MQE
1-bit int comes from its computation overhead of se-
lective averaging for error minimization. By leveraging
efficient vectorized operations, 3LC does not add such high
overhead.

We also examine how designs perform during a training run
in detail. Figure 4 depicts runtime (not final) training loss
and test accuracy of the baseline, the most representative
quantization, sparsification, and multiple local steps designs,
and 3LC with the default sparsity multiplier; the result of
omitted designs is similar to that of a close design (e.g.,
8-bit int is similar to the baseline). Except for 3LC,
traffic reduction designs tend to have higher training loss,
and their accuracy also increases slowly. In contrast, 3LC
achieves small training loss and high accuracy that are close
to those of the baseline.

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

0 5000 10000 15000 20000 25000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

32-bit float
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)

0 5000 10000 15000 20000 25000
Training steps

0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

32-bit float
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)

Figure 4. Training loss (left) and test accuracy (right) using standard training steps.

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

3LC (s=1.00)
3LC (s=1.50)
3LC (s=1.75)
3LC (s=1.90)

0 200 400 600 800
Total training time (minutes)

0

Figure 5. Training time and test accuracy
with a varied sparsity multiplier (s).

Table 2. Average traffic compression of 3LC
using standard training steps with a varied
sparsity multiplier (s).

s Comp. ratio Avg. bits

No ZRE 20.0× 1.60
1.00 39.4× 0.812
1.50 70.9× 0.451
1.75 107 × 0.298
1.90 160 × 0.200

0 5000 10000 15000 20000 25000
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
om

pr
es

se
d

si
ze

 p
er

 s
ta

te
 c

ha
ng

e
(b

its
)

Without ZRE
With ZRE (push)
With ZRE (pull)

0 5000 10000 15000 20000 25000
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
om

pr
es

se
d

si
ze

 p
er

 s
ta

te
 c

ha
ng

e
(b

its
)

Without ZRE
With ZRE (push)
With ZRE (pull)

Figure 6. Compressed size per state change value (left: s=1.00; right: s=1.75).

4.5 Sensitivity Analysis

The control knob of 3LC is a sparsity multiplier s. With
a high s, 3-value quantization emits more zeros, making
zero-run encoding more effective. We vary s and measure
training time, traffic reduction, and accuracy.

Figure 5 compares tradeoffs between total training time and
test accuracy using 25%, 50%, 75%, and 100% of stan-
dard training steps at 10 Mbps. In general, a high sparsity
multiplier reduces training time, but it can also reduce con-
vergence speed with fewer training steps. Most s values
lead to high accuracy when using 100% of standard training
steps, but s = 1.90 exhibits lower accuracy than others.

Table 2 examines the average traffic reduction of 3LC. With-
out zero-run encoding (“No ZRE”), the base-35–encoded
size of each state change is 1.6 bits. Applying zero-run
encoding halves the traffic volume for the default sparsity
multiplier (s = 1.00). With a higher s, 3LC can com-
press traffic more aggressively; s = 1.90 realizes a 160×
end-to-end compression ratio and 0.2 bits per state change
while it achieves lower test accuracy. This high compression
ratio can be useful for metered and/or highly bandwidth-
constrained network connections.

The compression ratio of zero-run encoding changes over
time because the sparsity of gradients and model deltas af-
fects zero-run encoding’s effectiveness. Figure 6 plots the

compressed size of gradient pushes and model pulls at each
training step when executing standard training steps. Com-
pressed pushes tend to be smaller than compressed pulls
until the later stage of training, which indicates that state
changes in model pulls have less sparsity (fewer zeros in the
quantization output) because these changes reflect aggre-
gated gradient pushes from multiple workers. After finishing
approximately 70% of training (when runtime training loss
becomes more stable), compressed pushes become larger,
which shows that workers now generate less sparse gradi-
ents. 3LC does not forcefully limit how many state changes
can be transmitted at each training step; it permits transmit-
ting important state changes as much as needed, which can
help achieve fast convergence and high accuracy.

5 RELATED WORK

Quantization: 1-bit stochastic gradient descent (Seide
et al., 2014) represents each state change with two values,
which can be dequantized using two floating-point numbers
that minimize squared quantization errors. It accumulates
quantization errors for later error correction. 3LC achieves
more effective traffic reduction that transmits approximately
1.6-bit worth information in a sub-1-bit representation with-
out reducing the maximum magnitude of state change values
(important for fast convergence and high accuracy). 3LC
provides a sparsity multiplier that can change its compres-

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

sion level. 3LC’s quantization and encoding methods are
easier to accelerate by using existing vectorized operations.

QSGD (Alistarh et al., 2017) and TernGrad (Wen et al.,
2017) use stochastic quantization that makes quantized val-
ues an unbiased estimator of the original values. 3LC uses
error accumulation buffers that empirically provide better
accuracy without introducing changes to machine learning
algorithms for accuracy compensation.

TernGrad (Wen et al., 2017) uses 3-values to quantize state
changes, which is similar to 3LC’s 3-value quantization.
However, TernGrad lacks a knob to control the compression
level and introduces a barrier to synchronize quantization
parameters across all workers. TernGrad uses 2-bit encod-
ing, which is far less compact than 3LC’s encoding that
requires only 0.3–0.8 bits per state change.

ECQ-SGD (Wu et al., 2018) combines quantization error
accumulation and stochastic quantization. It scales the accu-
mulated errors by 0.1× for convergence, which permits less
error correction per training step than 3LC provides.

Quantization methods often employ entropy coding schemes
such as Huffman coding and Elias coding for compact binary
representations (Øland & Raj, 2015; Alistarh et al., 2017).
3LC’s zero-run encoding offers high compression ratios (up
to 8×) by using byte-level operations and no lookup tables,
which helps achieve low computation overhead.

Sparsification: The parameter server (Li et al., 2014) dis-
cusses filtering zero gradients for small-value model param-
eters. 3LC can compress both gradients and model deltas
regardless of the magnitude of the model parameters.

Bösen (Wei et al., 2015) can prioritize sending large gra-
dients and model deltas by sorting them. Because sorting
millions of state change values is expensive, there are pro-
posals that use a relative threshold (Hsieh et al., 2017), a
global threshold (Aji & Heafield, 2017), per-tensor thresh-
olds (Hardy et al., 2017; Fang et al., 2018; Lin et al., 2018),
or round-robin selection (Watcharapichat et al., 2016) for
low-overhead sparsification. Among these, Gaia (Hsieh
et al., 2017) changes the relative threshold to send more
state changes as training progresses. 3LC transmits larger
compressed data in the later stage of training without having
to control the compression level explicitly.

Gradient dropping (Aji & Heafield, 2017) and Deep Gradi-
ent Compression (Lin et al., 2018) achieve high compression
by transmitting a very few gradients. Such aggressive gradi-
ent reduction, however, necessitates recovering accuracy by
modifying machine learning algorithms (Hardy et al., 2017;
Lin et al., 2018), which reduces their generality when com-
pressing non-gradient state changes such as model pulls in
parameter server architectures. 3LC tackles the traffic com-
pression problem with a constraint of preserving existing

machine learning algorithms to achieve better applicability.

Poseidon (Zhang et al., 2017) reduces network traffic by
transmitting small “sufficient factors” that contain enough
information to construct full gradient tensors for certain
types of neural network layers (Xie et al., 2014). 3LC pur-
sues a general tensor compression scheme that can compress
gradients and model deltas for any type of layer.

Infrequent communication: Federated learning (Konečnỳ
et al., 2016; McMahan et al., 2017) runs multiple training
steps between state change transmission. Our experiments
show that using infrequent transmission alone can lead to
lower accuracy when using the same number of training
steps. Combining 3LC and infrequent communication to
maximize their benefits is future work.

Task and operation scheduling: Intelligent scheduling of
distributed ML tasks and their internal operations can reduce
contention at the network, help computation and commu-
nication overlap, and reduce expensive communication be-
tween devices (Zhang et al., 2017; Hazelwood et al., 2018;
Mirhoseini et al., 2018). This approach is orthogonal to
the traffic compression we discuss in this paper. We en-
sure that computation and communication overlap in our
distributed training experiments so that we can examine
practical benefits of 3LC beyond the current state of the art.

6 CONCLUSION

Achieving system balance is an everlasting challenge for
computer systems. This paper investigated the balance be-
tween algorithmic efficiency (accuracy), computational effi-
ciency, communication bandwidth, and applicability for
machine learning (ML) systems. We described 3LC, a
new lossy compression scheme for distributed training of
ML models that can reduce wall-clock training time on
bandwidth-constrained networks by up to 23× without im-
pairing training or changing ML algorithms. 3LC’s key
contributions arise from combining the strengths of tensor
quantization and sparsification approaches together with
customized encoding techniques that are both fast and ef-
fective. By offering a lower-communication operating point
for distributed training, we hope to further the discussion
of what hardware capabilities may be required for future
balanced-system cluster and hardware designs for ML.

ACKNOWLEDGMENTS

This work was supported by funding from National Science
Foundation under Award IIS-1409802, Intel via the Intel
Science and Technology Center for Visual Cloud Systems
(ISTC-VCS), and Google. We thank Mike Burrows, Christo-
pher Canel, Giulio Zhou, and anonymous reviewers for their
invaluable feedback.

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M.,
Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner,
B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,
and Zheng, X. TensorFlow: A system for large-scale machine
learning. In Proc. USENIX OSDI, 2016.

Aji, A. F. and Heafield, K. Sparse communication for distributed
gradient descent. In Proc. EMNLP, 2017.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M.
QSGD: Communication-efficient SGD via gradient quantization
and encoding. In Proc. NIPS, 2017.

Cano, I., Weimer, M., Mahajan, D., Curino, C., and Fumarola,
G. M. Towards geo-distributed machine learning. Technical
Report arXiv:1603.09035, arXiv, 2016.

Chen, J., Monga, R., Bengio, S., and Jozefowicz, R. Revisiting
distributed synchronous SGD. In Proc. ICLR Workshop Track,
2016.

Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman, K. Project
Adam: Building an efficient and scalable deep learning training
system. In Proc. USENIX OSDI, 2014.

Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., and Xing,
E. P. GeePS: Scalable deep learning on distributed GPUs with
a GPU-specialized parameter server. In Proc. EuroSys, 2016.

European Commission. EU Commission and United States agree
on new framework for transatlantic data flows: EU-US Pri-
vacy Shield. http://europa.eu/rapid/press-rele
ase_IP-16-216_en.htm, February 2016.

Fang, J., Fu, H., Yang, G., and Hsieh, C.-J. RedSync : Reducing
synchronization traffic for distributed deep learning. Technical
Report arXiv:1808.04357, arXiv, 2018.

Gailly, J.-L. and Adler, M. zlib. http://www.zlib.net/,
2013.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski,
L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate, large
minibatch SGD: Training ImageNet in 1 hour. Technical Report
arXiv:1706.02677, arXiv, 2017.

Han, S., Mao, H., and Dally, W. J. Deep Compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding. In Proc. ICLR, 2016.

Hardy, C., Merrer, E. L., and Sericola, B. Distributed deep learning
on edge-devices: Feasibility via adaptive compression. In Proc.
IEEE NCA, 2017.

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhul-
gakov, D., Fawzy, M., Jia, B., Jia, Y., Kalro, A., Law, J., Lee,
K., Lu, J., Noordhuis, P., Smelyanskiy, M., Xiong, L., and
Wang, X. Applied machine learning at Facebook: A datacenter
infrastructure perspective. In Proc. IEEE HPCA, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. Technical Report arXiv:1512.03385, arXiv,
2015.

Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B.,
Gibson, G. A., Ganger, G., and Xing, E. P. More effective
distributed ML via a stale synchronous parallel parameter server.
In Proc. NIPS, 2013.

Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G. R.,
Gibbons, P. B., and Mutlu, O. Gaia: Geo-distributed machine
learning approaching LAN speeds. In Proc. USENIX NSDI,
2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proc.
ICML, 2015.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle,
R., Cantin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau,
M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R.,
Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J.,
Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan,
A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy,
S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K.,
Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller,
K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie,
T., Omernick, M., Penukonda, N., Phelps, A., Ross, J., Ross,
M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham,
M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G.,
Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R., Wang,
W., Wilcox, E., and Yoon, D. H. In-datacenter performance
analysis of a tensor processing unit. In Proc. ISCA, 2017.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh,
A. T., and Bacon, D. Federated learning: Strategies
for improving communication efficiency. Technical Report
arXiv:1610.05492, arXiv, 2016.

KPMG. Overview of China’s Cybersecurity Law. https://ho
me.kpmg.com/cn/en/home/insights/2017/02/
overview-of-chinas-cybersecurity-law.html,
February 2017.

Krizhevsky, A. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A.,
Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y. Scaling
distributed machine learning with the parameter server. In Proc.
USENIX OSDI, 2014.

Lin, X., Zhao, C., and Pan, W. Towards accurate binary convolu-
tional neural network. In Proc. NIPS, 2017.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, B. Deep Gradi-
ent Compression: Reducing the communication bandwidth for
distributed training. In Proc. ICLR, 2018.

linux-tc. Linux Traffic Control. http://tldp.org/HOWTO
/Traffic-Control-HOWTO/intro.html, 2017.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient descent
with warm restarts. In Proc. ICLR, 2017.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Ar-
cas, B. A. Communication-efficient learning of deep networks
from decentralized data. In Proc. AISTATS, 2017.

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q. V., and
Dean, J. A hierarchical model for device placement. In Proc.
ICLR, 2018.

Nvidia Inside Pascal. Inside Pascal: Nvidia’s newest computing
platform. https://devblogs.nvidia.com/inside
-pascal/, April 2016.

Nvidia NVLink. Nvidia NVLink fabric. https://www.nvid
ia.com/en-us/data-center/nvlink/, April 2018.

Nvidia Tesla V100. Nvidia Tesla V100. https://www.nvid
ia.com/en-us/data-center/tesla-v100/, March
2018.

Øland, A. and Raj, B. Reducing communication overhead in
distributed learning by an order of magnitude (almost). In Proc.
IEEE ICASSP, 2015.

Peng, Y., Bao, Y., Chen, Y., Wu, C., and Guo, C. Optimus: An
efficient dynamic resource scheduler for deep learning clusters.
In Proc. EuroSys, 2018.

http://europa.eu/rapid/press-release_IP-16-216_en.htm
http://europa.eu/rapid/press-release_IP-16-216_en.htm
http://www.zlib.net/
https://home.kpmg.com/cn/en/home/insights/2017/02/overview-of-chinas-cybersecurity-law.html
https://home.kpmg.com/cn/en/home/insights/2017/02/overview-of-chinas-cybersecurity-law.html
https://home.kpmg.com/cn/en/home/insights/2017/02/overview-of-chinas-cybersecurity-law.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://devblogs.nvidia.com/inside-pascal/
https://devblogs.nvidia.com/inside-pascal/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/

3LC: Lightweight and Effective Traffic Compression for Distributed Machine Learning

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. In Proc.
NIPS, 2011.

Robinson, A. H. and Cherry, C. Results of a prototype television
bandwidth compression scheme. In Proc. IEEE, 1967.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochastic
gradient descent and application to data-parallel distributed
training of speech DNNs. In Proc. INTERSPEECH, 2014.

Simonyan, K. and Zisserman, A. Very deep convolutional net-
works for large-scale image recognition. Technical Report
arXiv:1409.1556, arXiv, 2014.

Stich, S. U., Cordonnier, J., and Jaggi, M. Sparsified SGD with
memory. In Proc. NeurIPS, 2018.

Strom, N. Scalable distributed DNN training using commodity
GPU cloud computing. In Proc. INTERSPEECH, 2015.

Valiant, L. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, 1990.

Venkatesh, G., Nurvitadhi, E., and Marr, D. Accelerating deep
convolutional networks using low-precision and sparsity. In
Proc. IEEE ICASSP, 2017.

Vulimiri, A., Curino, C., Godfrey, P. B., Jungblut, T., Padhye, J.,
and Varghese, G. Global analytics in the face of bandwidth and
regulatory constraints. In Proc. USENIX NSDI, 2015.

Watcharapichat, P., Morales, V. L., Fernandez, R. C., and Piet-
zuch, P. Ako: Decentralised deep learning with partial gradient
exchange. In Proc. ACM SoCC, 2016.

Wei, J., Dai, W., Qiao, A., Ho, Q., Cui, H., Ganger, G. R., Gibbons,
P. B., Gibson, G. A., and Xing, E. P. Managed communication
and consistency for fast data-parallel iterative analytics. In Proc.
ACM SoCC, 2015.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and Li,
H. TernGrad: Ternary gradients to reduce communication in
distributed deep learning. In Proc. NIPS, 2017.

Wu, J., Huang, W., Huang, J., and Zhang, T. Error compensated
quantized SGD and its applications to large-scale distributed
optimization. In Proc. ICML, 2018.

Xie, P., Kim, J. K., Zhou, Y., Ho, Q., Kumar, A., Yu, Y., and
Xing, E. Distributed machine learning via sufficient factor
broadcasting. Technical Report arXiv:1409.5705, arXiv, 2014.

Yu, Y., Abadi, M., Barham, P., Brevdo, E., Burrows, M., Davis,
A., Dean, J., Ghemawat, S., Harley, T., Hawkins, P., Isard, M.,
Kudlur, M., Monga, R., Murray, D., and Zheng, X. Dynamic
control flow in large-scale machine learning. In Proc. EuroSys,
2018.

Zhang, H., Zheng, Z., Xu, S., Dai, W., Ho, Q., Liang, X., Hu,
Z., Wei, J., Xie, P., and Xing, E. P. Poseidon: An efficient
communication architecture for distributed deep learning on
GPU clusters. In Proc. USENIX ATC, 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning trans-
ferable architectures for scalable image recognition. Technical
Report arXiv:1707.07012, arXiv, 2017.

