
SEQUENTIAL AGGREGATION AND REMATERIALIZATION: DISTRIBUTED
FULL-BATCH TRAINING OF GRAPH NEURAL NETWORKS ON LARGE

GRAPHS

Hesham Mostafa 1

ABSTRACT
We present the Sequential Aggregation and Rematerialization (SAR) scheme for distributed full-batch training of
Graph Neural Networks (GNNs) on large graphs. Large-scale training of GNNs has recently been dominated
by sampling-based methods and methods based on non-learnable message passing. SAR on the other hand is a
distributed technique that can train any GNN type directly on an entire large graph. The key innovation in SAR
is the distributed sequential rematerialization scheme which sequentially re-constructs then frees pieces of the
prohibitively large GNN computational graph during the backward pass. This results in excellent memory scaling
behavior where the memory consumption per worker goes down linearly with the number of workers, even for
densely connected graphs. Using SAR, we report the largest applications of full-batch GNN training to-date, and
demonstrate large memory savings as the number of workers increases. We also present a general technique based
on kernel fusion and attention-matrix rematerialization to optimize both the runtime and memory efficiency of
attention-based models. We show that, coupled with SAR, our optimized attention kernels lead to significant
speedups and memory savings in attention-based GNNs.

1 INTRODUCTION

Graph neural networks (GNNs), also called message pass-
ing networks (Gilmer et al., 2017; Kipf & Welling, 2017;
Scarselli et al., 2008), are widely applied in various types of
graph-related problems (Shi et al., 2020; Corso et al., 2020;
Li et al., 2019; Zhang & Chen, 2018). At every layer in a
GNN, each node produces an output feature vector by using
a learnable transformation to aggregate the input feature vec-
tors of its neighbors in the graph. After K layers, a node’s
receptive field would span the input features of all nodes that
are less than K hops away in the graph. While this could be
advantageous in order to allow a GNN to consider a wider
neighborhood when learning the features of each node (Li
et al., 2020), it can lead to a large computational graph at
the output where every node’s output features depend on
a significant portion of the entire input graph, as well as
intermediate node features, a phenomenon that is known as
neighbor explosion (Hamilton et al., 2017).

When training deep GNNs on large graphs, it can quickly
becomes infeasible to store the large GNN computational
graph in memory. Exact GNN training, or full-batch GNN

1Intel AI Lab, San Diego, California, USA. Correspondence to:
Hesham Mostafa <hesham.mostafa@intel.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

training, is thus difficult to scale to large graphs. Other,
more scalable, training alternatives such as sampling-based
methods (Hamilton et al., 2017; Zeng et al., 2019; Chiang
et al., 2019) have recently become more common. Sampling-
based methods keep the memory requirements in check by
sampling a small part of the graph each training iteration.
Due to the sampling involved, these approaches yield noisy
and biased gradient estimates (Chen et al., 2018; 2017).
Many sampling-based methods run into memory issues as
the depth of the GNN increases, and bigger neighborhoods
need to be sampled for each node (Hamilton et al., 2017).
The sampling operation itself introduces extra computa-
tional overhead. With the wide variety of possible sampling
operators, it is unclear for a given problem what sampling
operator would work best. While it is possible to bound the
errors introduced by sampling in linear GNN layers (Chen
et al., 2018), no such bounds exist when the GNN uses
non-linearities. Many scalable GNN training methods avoid
having to construct the large computational graph by using
non-learnable message propagation followed by learnable
node-wise networks (Rossi et al., 2020; Sun & Wu, 2021;
Klicpera et al., 2018; Wu et al., 2019). This simplifies the
GNN considerably as the expensive propagation of mes-
sages between neighbors in the graph is only done once in
a non-learnable manner during pre-processing. The use of
non-learnable messages, however, limits the expressiveness
of these models compared to traditional GNNs.

Sequantial Aggregation and Rematerialization for Training Large GNNs

Distributed training across several machines might seem
to be one way to handle the large memory requirements
of full-batch GNN training. However, distributed training
methods such as model parallel training would still run
into issues if a single device cannot accommodate the input
graph or the activations of a single GNN layer. A more
promising approach is domain parallel training (Gholami
et al., 2018), also known as spatially-parallel training in the
convolutional neural networks case (Dryden et al., 2019; Jin
et al., 2018). In domain-parallel training, the input is split
into many parts and each machine handles the computation
for a single part. Figure 1a, however, illustrates the issue
with domain-parallel training when applied to GNNs. Even
though, initially, each machine stores only a small part of
the input graph, each machine would eventually need to
store a substantial portion of the entire graph as part of its
output’s computational graph.

Our main contribution is the sequential aggregation and re-
materialization (SAR) scheme illustrated in Fig. 1b. SAR
avoids constructing the computational graph during the for-
ward pass. Instead, SAR constructs the computational graph
and frees it piece by piece during the backward pass. As-
suming equal partitioning of the graph across N workers,
we can show that SAR would need to materialize at most 2
graph partitions at each machine at any point in time. The
memory requirement per machine thus scales as 2/N , even
for densely connected graphs. This allows SAR to scale to
arbitrarily large graphs by simply adding more workers.

We show that the communication overhead incurred by
SAR to re-materialize the computational graph during the
backward pass can be avoided for many popular GNN
variants, making the memory savings of SAR practically
free. For some variants such as Graph Attention Networks
(GATs) (Veličković et al., 2017), however, the communica-
tion overhead of SAR can not be avoided. Yet, we identify
a couple of optimizations for attention-based models which
synergize particularly well with SAR. These optimizations
avoid materializing the costly attention coefficients tensors
and instead compute them on the fly using fused kernels dur-
ing the forward and backward passes. We show this speeds
up the computation in GAT-like networks by reducing re-
dundant memory accesses, and in conjunction with SAR,
further reduces the memory footprint for attention-based
models. We show that after incorporating these optimiza-
tions, training GAT using SAR is as fast as vanilla domain
parallel training while consuming a fraction of the memory.

We build SAR directly on top of DGL (Wang et al., 2019),
one of the most popular GNN training libraries, which in
turn is built on top of PyTorch (Paszke et al., 2019). This
allows us to directly use standard DGL layers and GNN
networks. Using SAR requires minor modification to exist-
ing single-node DGL code: it requires modifying the data

loading part to load a graph partition at each worker instead
of loading the entire graph; and modifying the training loop
to synchronize the parameter gradients at the end of each
training iteration. Unlike prior full-batch GNN training
frameworks that reimplement basic graph operations (Ma
et al., 2019; Jia et al., 2020), we directly leverage the graph
operations of DGL which allows us to capitalize on efficient,
continuously updated, kernels for many basic graph opera-
tions such as sparse-dense matrix multiplications (SpMM).
We integrate the sequential rematerialization steps of SAR
into PyTorch’s Autograd mechanics in a way that is trans-
parent to the user. The user can thus use PyTorch’s standard
model definition steps to describe arbitrary GNN topolo-
gies. During training, SAR runs under the hood to manage
inter-machine communication and the dynamic construc-
tion and deletion of pieces of the computational graph. We
test SAR on a cluster of Xeon CPUs and use it to run the
largest full-batch GNN training experiments to date. We
report competitive accuracies on all benchmarks while us-
ing a fraction of the memory consumed by standard domain
parallel training.

2 RELATED WORK

Memory is often the central bottleneck when running full-
batch graph training. NeuGraph (Ma et al., 2019) describe
an efficient hybrid CPU-GPU training method that continu-
ously shuttles data between main memory and GPU memory
to enable full-batch GNN training on the GPU. NeuGraph,
however is limited to multi-GPU training on a single host
where the graph and GNN activations need to fit in system
memory. ROC (Jia et al., 2020) removes the single-node lim-
itation to enable multi-node training, yet both NeuGraph and
ROC train on relatively small graphs that easily fit within
the main memory of a single host. They do not address
scalability concerns for truly large-scale (multi-terabyte)
GNN models that exceed the realistic memory capacity of
a single host. CAGNET (Tripathy et al., 2020) describes a
distributed training method that minimizes inter-node com-
munication. However, it still tests on relatively small graphs
and does not address memory scalability concerns. All
these methods do not tackle complex GNN models like
GAT. They are also specific to linear GNN topologies and
do not address more complex topologies that make use of
skip connections (Li et al., 2020; Xu et al., 2018). Dist-
GNN (Md et al., 2021) is a recent distributed GNN training
library for full-batch training. However, ‘full-batch’ in Dist-
GNN refers only to the forward pass. The backpropagation
of errors is local to each machine and no inter-machine com-
munication happens during the backward pass leading to
a degradation of accuracy as the number of machines in-
creases. SAR runs a full-batch forward and backward pass.
The results of training are exactly the same regardless of the
number of machines.

Sequantial Aggregation and Rematerialization for Training Large GNNs

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

(step 1)
(step 2) (step 3)

(step 4)
(step 5) (step 6)

(a)

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

machine1

machine2

machine3

(step 1)

(step 2) (step 3)

(step 4)

(step 5) (step 6)

(b)

Figure 1. Domain parallel training of a GNN layer on a graph with 9 nodes. The graph is partitioned across 3 machines. Dashed arrows
indicate inter-machine communication, while solid arrows indicate within machine message passing. Only the data flow and storage
patterns for machine 1 are shown. (a) Forward pass (top) and backward pass (bottom) for vanilla domain-parallel training. Note how at
the end of the forward pass (step 3), machine 1 needs to store the input features of 7 nodes as part of the output’s computational graph. (b)
Forward pass (top) and backward pass (bottom) for domain-parallel training using SAR. The computational graph is not constructed
during the forward pass. Instead, it is sequentially rematerialized then deleted during the backward pass.

Activation re-materialization is a popular strategy for reduc-
ing the training memory footprint of deep learning models.
Activation materialization avoids storing all intermediate
activations during the forward pass. Instead, during the
backward pass, it recomputes many intermediate activations
or loads them directly from disk (Chen et al., 2016; Jain
et al., 2019). Activation re-materialization differs from SAR
in that SAR maintains all activations in the memory of the
hosts. SAR does not recompute or load activations from
disk, but rather shuttles activations between hosts to wher-
ever they are needed to compute outputs during the forward
pass, or to compute gradients during the backward pass.
SAR guarantees that this shuttling of activations will never
overload the memory of a single host with more than two
partitions of the data at any point in time.

Reversible neural networks use special layers that allows a
layer’s input to be reconstructed (rematerialized) from the
layer’s output during the backward pass (Gomez et al., 2017;
Li et al., 2021). While the training memory footprint of re-
versible networks can be made independent of the number
of layers, reversible networks incur an additional compu-
tational cost to recompute activations. They also require a
single layer’s computational graph to fit in memory, which
might not be possible for GNNs applied to large graphs.

3 METHODS

3.1 Preliminaries

Let G(V, E) be a graph with node set V and edge set E . Let
xi ≡ h0i be the input feature vector of node i. Layer l in a
multi-layer GNN produces the output hli at node i through

the following steps.

zl = Wlhl−1, ml
j→i = fmessage(z

l
i, z

l
j ; θ

l),

hli = fnode
(
hl−1i , Agg

(
{ml

j→i : j ∈ N (i)}
)
;φl
)
. (1)

Wl is a learnable matrix. fmessage and fnode are general
learnable transformations with parameters θl and φl, respec-
tively. N (i) is the neighborhood of node i in the graph,
and mj→i are messages from node j to an adjacent node i.
Agg is a permutation-invariant aggregation operator. We are
interested in two representative variants of GNNs: Graph-
Sage (Hamilton et al., 2017) and GAT (Veličković et al.,
2017). For GraphSage, the propagation and aggregation
operators take the form:

ml
j→i = zlj ,

hli = σ

Wresh
l−1
i +

1

|N (i)|
∑

j∈N (i)

ml
j→i

 , (2)

where Wres are learnable weights, and σ is a non-linearity.
Similarly, GAT is defined by:

elj→i = LeakyReLU
(
al

T

(zli||zlj)
)

ml
j→i = (elj→i, z

l
j)

hli = σ

 ∑
j∈N (i)

exp(elj→i)∑
k∈N (i)

exp(elk→i)
zlj

 , (3)

where al is learnable. The message is a 2-tuple containing
un-normalized attention weights and the neighbor features.

3.2 Sequential Aggregation and Rematerialization

The aggregation operator Agg used in GNNs can
typically be sequentially or recursively applied, i.e,

Sequantial Aggregation and Rematerialization for Training Large GNNs

Agg({A,B,C}) = Agg({A,Agg({B,C})}). Even
attention-based aggregators (such as in Eq. 3) can be incre-
mentally applied by sequentially aggregating neighboring
features using un-normalized attention coefficients, and se-
quentially aggregating the normalization factors separately.
At the end, we can divide by the normalization factors to
obtain the correctly-normalized output. This property of the
aggregation operator allows a machine in domain parallel
training to sequentially fetch neighboring nodes from re-
mote machines and aggregate their messages incrementally,
and as we will show, also enables SAR to incrementally
backpropagate the gradients along pieces of the computa-
tional graph.

SAR begins by partitioning the graph into N partitions and
distributes these partitions to N machines. Vp are the graph
vertices in partition p. Each machine is responsible for com-
puting and storing the features of the vertices in its partition
for all GNN layers. For each worker p, SAR constructs N
subgraphs Gp,1, . . . ,Gp,N where Gp,q = (Vp,q, Ep,q). Ep,q
are all the edges from the vertices in partition q to the ver-
tices in partition p, and Vp,q are the vertices incident to these
edges.

The forward pass of SAR is described in algorithm 1. It
uses standard PyTorch Autograd mechanics to record the
computational trace until it reaches the point where it needs
to execute the message passing and aggregation parts of the
GNN layer. SAR then turns off PyTorch’s Autograd, starts
fetching remote data, and runs the messages construction
and aggregation incrementally. SAR ensures that data from
at most one remote partition is resident in memory at any
time. After aggregation is complete, SAR re-enables Py-
Torch Autograd and the GNN’s forward pass continues in a
standard manner. There is thus a gap in the Autograd trace
between the zl and θl variables and the output of the Agg
operator: Accl (see Eq. 1).

During the backward pass, PyTorch Autograd can not back-
propagate errors through this gap. SAR thus takes over as
soon as it receives the error w.r.t (with respect to) the ag-
gregator output (eAccl) and handles the backpropagation of
errors to zl and θl as shown in Algorithm 2. SAR iterates
over all partitions and incrementally backpropagates the
error to each of them. Worker p waits until it receives the
errors for its local node features, Zlp, from all other workers
(Line 15), then provides this error to Autograd (Line 17) to
continue error backpropagation. SAR distinguishes between
two cases:

• case 1: The gradient of the aggregator output w.r.t
zl and θ does not depend on the values of zl. SAR
does not need to fetch the remote zl variables and can
instead directly send the error back to their machine.
That is the case for GraphSage (Eq. 2) where aggrega-
tion simply sums up the features of neighboring nodes

and there is no θ parameter.

• case 2: When case 1 does not hold (which is the case
for GAT). SAR must fetch the remote zl variables to
correctly evaluate the gradients.

These two cases reflect the two distinct behaviors of math-
ematical operators in PyTorch (as well as other machine
learning libraries): in the first case, the operator does not
need the input tensors in order to backpropagate the gradi-
ents from the output to the inputs. The simplest example is
the sum operator; in the second case the operator needs the
input tensors in order to be able to calculate the gradients
of the inputs from the output gradient in the backward pass.
The simplest example is the product operator.

Since many GNN variants such as GraphSage use sum or
mean aggregation, SAR will introduce no overhead com-
pared to vanilla domain parallel training for these GNN
variants. For GNN variants like GAT, there is an extra
communication and computation overhead to re-fetch the
remote features during the backward pass and re-calculate
any intermediate variables (such as the attention coefficients
elj→i in Eq. 3). The communication overhead in case 2
over vanilla domain parallel training is 50% as instead of
only communicating node features during the forward pass
and gradients of the node features during the backward pass,
SAR also has to communicate node features during the back-
ward pass. Figure 1b illustrates the backward pass for case
2. In the next section, we describe how this overhead can be
minimized.

Algorithm 1 SAR forward pass for layer l on worker p

Inputs: {hl−1k : k ∈ Vp},Gp,1, . . . ,Gp,N
zlk = Wlhl−1k for all k ∈ Vp

Disable PyTorch Autograd
Accl = 0 ∈ R|Vp|×F . Output of the Agg operator
for q ∈ 1..N do . Iterate over all partitions

Fetch Zlq→p = {zlk : k ∈ Vq ∧ k ∈ Vp,q}
for (i, j) ∈ Ep,q do

ml
j→i = fmessage(z

l
i, z

l
j ; θ

l)
end for
for i ∈ Vp ∧ i ∈ Vp,q do

Accli = Accli +Agg
(
{ml

j→i : (i, j) ∈ Ep,q}
)

end for
delete Zlq→p and {ml

j→i : (i, j) ∈ Ep,q}
end for
Enable PyTorch Autograd
Return hli = fnode(h

l−1
i , Accl;φl)

3.3 Fused Attention Kernels

Models that make use of an attention mechanism such as
transformers (Vaswani et al., 2017) or GAT (Veličković

Sequantial Aggregation and Rematerialization for Training Large GNNs

Algorithm 2 SAR backpropagation of errors within the
message passing and aggregation part of layer l on worker p

Inputs : Zlp = {zlk : k ∈ Vp}, Accl, eAccl
Inputs : Gp,1, . . . ,Gp,N
θl.grad = 0 . Gradient of theta parameter
for q ∈ 1..N do . Iterate over all partitions

if dAcc
l

dzl
or dAcc

l

dθl
depend on zl then

Fetch Zlq→p = {zlk : k ∈ Vq ∧ k ∈ Vp,q}
end if
Ep→q = {eTAccl

dAccl

dzlk
: k ∈ Vq ∧ k ∈ Vp,q}

for (i, j) ∈ Ep,q do

θl.grad = θl.grad+ eTAccl
dAccl

dml
j→i

dml
j→i

dθl

end for
send error Ep→q to worker q

end for
. Wait and accumulate errors from remote machines:

Ep =
N∑
q=1

Eq→p . Total Loss gradient w.r.t Zlp

Sum θl.grad across all machines
Zlp.backward(Ep)

et al., 2017) are typically implemented in two steps: 1) Cal-
culate the attention coefficients, 2) Sum the input features
weighted by the attention coefficients. This two-step pro-
cess writes the attention coefficients to memory after step
1 then reads them back in step 2. We implemented custom
fused forward and backward kernels for GAT (Eq. 3) that
calculate the attention coefficients on the fly while sum-
ming the node’s neighbor features (forward pass) or pushing
the gradients to the neighbors (backward pass). The at-
tention coefficients are thus never written to, or read from,
memory. This reduces memory accesses and reduces the
peak memory consumption of the fused kernel compared
to the standard DGL implementation. One downside when
running standard training is that we need to re-calculate
the attention coefficients during the backward pass. This
downside, however, does not apply when we do distributed
training using SAR, as we would need to re-materialize
the computational graph during the backward pass anyway,
which involves re-calculating the attention coefficients. Us-
ing fused attention kernels thus synergizes well with SAR
and as we will show in the next section significantly speeds
up distributed training of GAT networks.

As we show in the results section, we find that the fused
forward and backward attention kernels often outperform
DGL’s vanilla GAT implementation in vanilla single-host
training. The benefits of the reduced memory access profile
of the fused kernels thus outweighs the cost of re-calculating
the attention coefficients in the backward pass.

3.4 Practical Considerations

Prefetching: SAR is able to guarantee that no more than
two graph partitions will be resident in memory at any
worker. However, to overlap computation and communica-
tion, we find it beneficial to use separate pre-fetching threads
to pre-fetch the next remote partition at each worker before
the worker is done with the current partition. There can
thus be 3 partitions resident in memory: the local partition,
the remotely-fetched partition whose messages are being
actively aggregated, and the partition being pre-fetched. We
still maintain linear per-worker memory scaling with the
number of workers N , but at a rate of 3/N instead of 2/N .

Stable softmax: The softmax operation is often used
to normalize attention coefficients: softmax(e)i =
exp(ei)/

∑
k

exp(ek). Standard implementations first sub-

tract the maximum from all softmax arguments to avoid
large exponentials. In SAR’s incremental aggregation, we
do not have access to the maximum of the softmax argu-
ments. We thus use a running estimate of the maximum
based on the components of e we have observed till now.
Whenever we update the maximum, we correct the accu-
mulated numerator and denominator by multiplying with
exp(old max− new max). We observe that training can
quickly become unstable if we fail to numerically stabilize
the softmax using this method.

Batch normalization: Batch normalization normalizes
each row in the node feature matrix H ∈ R|V |×F to yield Ĥ,
where Ĥ[i] = (H[i]− µB)/

√
σ2
B + ε. µB and σB are the

mean and variance calculated across all rows of H. In SAR,
H is distributed across the workers. SAR implements a
custom BatchNorm operation that collectively calculates the
global mean and variance from the local mean and variance
in each worker, and a custom backward pass that ensures
the gradients w.r.t µB and σB are properly scaled based on
the number of nodes(feature matrix rows) at each workers,
before backpropagating further to the feature matrix. By
communicating only summary statistics and their gradients,
SAR’s BatchNorm is scalable and communication-efficient.

4 EXPERIMENTAL RESULTS

We run all experiments on a cluster of machines with Xeon
CPUs where each CPU has 36 physical cores, and each
machine has 256GB of main memory. The machines are
connected through Mellanox Infiniband 200Gb/s HDR inter-
connects. We use Python 3.6.8, PyTorch 1.8.1, and DGL 0.7.
We compile our custom GAT kernels using Intel’s icc com-
piler. All inter-machine communication is handled by the
torch.distributed library, where we use torch ccl (tor) as the
communication backend. torch ccl is the PyTorch wrapper
for Intel’s OneCCL collective communication library (one).

Sequantial Aggregation and Rematerialization for Training Large GNNs

4.1 Single-host Performance of Fused Attention
Kernels

We compare the performance of our fused attention ker-
nel for GAT against the standard DGL implementation of
GAT layers. We use the ogbn-products graph (see Table
1) and measure the run-time and memory consumption for
the forward and backward passes of a single GAT layer.
We vary the number of attention heads between 2,4, and
8 while keeping the feature dimension per head constant
which varies the input and output feature dimensions be-
tween 200, 400, and 800. The number of attention heads
controls how many attention coefficients need to be calcu-
lated per edge. Figure 2a shows that the forward pass for
the fused kernel is much faster than DGL (up to 4.5x faster
for 2 attention heads). We see that the fused backward ker-
nel is slightly faster than DGL’s backward pass when using
2 heads, is on par with DGL’s backward pass when using
4 heads, and slower when using 8 heads. As we increase
the number of attention heads, the fused backward kernel
needs to re-calculate more attention coefficients per edge
during the backward pass, which explains its worsening
relative performance as the number of heads increases. The
combined forward+backward pass using the fused kernels
is, however, always faster then DGL, though the advantage
narrows as we increase the number of heads.

Figure 2b shows the peak memory consumption (at the
end of the forward pass). As expected, the fused kernel
has lower peak memory as it does not store the attention
coefficients during the forward pass. The memory advantage
of the fused kernel increases as we increase the number of
attention heads (which increase the number of attention
coefficients).

2 4 8
Attention Heads

0

5

10

15

20

25

T
im

e
 (

s)

forward pass

backward pass

DGL

DGL

DGL

FAK

FAK

FAK

FAK:Fused Attention Kernel

(a)

2 4 8
Attention Heads

0

10

20

30

40

50

60

P
e
a
k

M
e
m

o
ry

 (
G

B
)

FAK

DGL

(b)

Figure 2. (a) Run times for the forward and backward passes for
the fused attention kernel (FAK) and DGL’s GAT implementa-
tion. (b) Peak memory consumption for the FAK and DGL’s GAT
implementation.

4.2 SAR Performance on Large-scale Graphs

We test SAR on two of the largest graphs in the Open
Graph Benchmarks(OGB) datasets (Hu et al., 2020): ogbn-
products and ogbn-papers100M. These are homogeneous
graphs. Appendix A contains results on a heterogeneous
graph (ogbn-mag). Table 1 summarizes the properties of

Table 1. Graph Datasets
ogbn-

products
ogbn-

papers100M
nodes 2.5M 111M
edges 124M 3.2B
input features 100 128
classes 47 172
GraphSage Accuracy 80.1% 65.8%
GraphSage+C&S Accuracy 80.9% 66.3%
GAT Accuracy 74.9% 63.7%
GAT+C&S Accuracy 77.7% 64.5%

ogbn-products and ogbn-papers100M. We train two GNNs
on each graph: 1) a 3-layer GraphSage network with hidden
feature size of 256, 2) a 3-layer GAT network with hidden
feature size of 128 and 4 attention heads. We use batch
normalization and dropout between all layers. We use the
label augmentation and masked label prediction scheme
from ref. (Shi et al., 2020) where, each epoch, we augment
the input features of a random subset of the training nodes
with the ground truth label, and predict the labels of the
remaining training nodes. At inference time, we augment
all training nodes with the ground truth labels. We always
train for 100 epochs with a decaying learning rate. At the
end of training, we run the Correct and Smooth (C&S) pro-
cedure from ref. (Huang et al., 2020) on the model output
to further boost accuracy. We implement C&S within the
same framework as SAR since C&S involves iterative prop-
agation of messages throughout the graph that is similar to
a GNN layer. C&S has no trainable parameters, though, and
no backward pass.

We use the metis library (Karypis & Kumar, 1997) to parti-
tion the graphs across the machines. Metis yields a roughly
equal number of nodes in each partition which helps to bal-
ance the load and memory consumption across all machines.
It also minimizes the number of edges that cross the partition
boundaries which minimizes the volume of communication
between the machines during training.

ogbn-products : We partition the ogbn-products graph
across 4, 8, and 16 machines. Figures 3a and 3b show
the epoch time and peak memory consumption when using
SAR and when using vanilla domain parallel training to
train a GraphSage GNN. For GraphSage, SAR incurs no
extra communication overhead. SAR has a slight run-time
advantage as the number of partitions increases and is more
memory-efficient. Figures 4a and 4b show the GAT train-
ing results. Plain SAR is significantly slower than domain
parallel training as SAR incurs a communication overhead
compared to domain parallel training by re-communicating
the nodes’ activations during the backward pass. Augment-

Sequantial Aggregation and Rematerialization for Training Large GNNs

ing SAR with our fused attention kernel (FAK), however,
significantly accelerates training. Even though SAR+FAK
still incurs a communication overhead compared to domain
parallel training, it is just as fast due to the more efficient
kernels used (see Fig. 2), and the fact that communication is
not the main bottleneck. The memory consumption of SAR
and SAR+FAK is significantly lower than domain parallel
training, especially as we increase the number of workers.

ogbn-papers100M : We partition the ogbn-papers100M
graph across 32, 64, and 128 machines. Figures 5 and 6
show the epoch times and peak memory consumption for
GraphSage and GAT, respectively. The memory advan-
tages of SAR and SAR+FAK versus domain parallel train-
ing are more pronounced for ogbn-papers100M. SAR and
SAR+FAK are almost 4x more memory efficient than do-
main parallel when training GAT on 128 machines. Training
GAT on 32 machines is not possible with domain parallel
training due to out-of-memory (OOM) errors. However, the
extra communication overhead of SAR and SAR+FAK on
GAT adversely affects their run-time scaling behavior as we
increase the number of machines. Going from 64 to 128
workers increases epoch run-time for SAR and SAR+FAK
as training becomes communication-bound. Domain par-
allel training on GAT at 128 workers is thus significantly
faster as it involves less communication. For GraphSage
where the communication volume is the same for all meth-
ods, SAR has a slight run-time advantage. SAR can cut
memory consumption by half when training the GraphSage
network on 128 machines. Appendix B contains additional
results that quantify the convergence speed of training. Ap-
pendix B also describes some key optimizations that can
greatly improve the run-time on ogbn-papers100M.

5 CONCLUSIONS

We presented SAR, a distributed memory-efficient scheme
for training large-scale GNNs. SAR ensures the large GNN
computational graph is never fully materialized at once at
any machine. Instead SAR materializes the computational
graph piece by piece to enable incremental backpropagation.
SAR drastically reduces memory consumption for GNN
models such as GAT whose computational graph includes
many large intermediate variables. Since SAR re-calculates
the intermediate variables (such as the attention coefficients)
during the backward pass, we developed custom GAT ker-
nels that do not save these coefficients to memory (since
this memory will be cleared by SAR anyway), but instead
calculate and use the attention coefficients on the fly. The re-
duced memory pressure improved the speed of the forward
pass, while keeping the backward pass comparable to that
of DGL. Our custom kernels significantly improve SAR’s
performance when training GAT GNNs.

4 8 16
machines

0

1

2

3

4

ep
oc

h
tim

e
 (s

)

SAR
vanilla DP

(a)

4 8 16
machines

0

5

10

15

p
e
a
k

m
e
m

o
ry

(G

B
) 1.1x

1.1x 1.1x

SAR vanilla DP

1

2

3

4

m
e
m

o
ry

 s
ca

lin
g

SAR vanilla DP

(b)

Figure 3. Epoch time and peak memory consumption per worker
when training a 3-layer GraphSage network on ogbn-products.

With the proliferation of approximate large-scale GNN train-
ing methods, exact (full-batch) training is a natural but hard
to obtain, and rarely provided, baseline. SAR makes it eas-
ier to obtain this exact GNN training baseline in order to
assess the effect of various training approximations on GNN
performance. The question of which of the three is better:
full-batch training, sampling-based training (Hamilton et al.,
2017; Zeng et al., 2019; Chiang et al., 2019), or training us-
ing non-learnable message propagation (Rossi et al., 2020;
Sun & Wu, 2021; Klicpera et al., 2018; Wu et al., 2019)
is beyond the scope of this paper. The answer depends
on the task at hand, the available computational resources,
and the desired accuracies. For example, epoch time in
sampling-based methods will generally be faster than full-
batch training as the communication volume in distributed
sampling-based training is significantly less. However, our
accuracy figures for ogbn-products for example are signifi-
cantly better than those reported for distributed sampling-
based training (Zheng et al., 2020). Moreover, it is unclear
how the input labels augmentation scheme we used (Shi
et al., 2020) would work in a sampling-based method where
labels cannot propagate throughout the whole graph. Simi-
larly, networks like GAT depend on having the full neigh-
borhood for each node in order to correctly normalize the
attention coefficients, which would not be possible in a
sampling-based approach. Similarly, GNN training methods
based on non-learnable message propagation achieve state
of the art results on several node classification tasks (Sun

Sequantial Aggregation and Rematerialization for Training Large GNNs

4 8 16
machines

0

2

4

6

8

10
e
p

o
ch

 t
im

e
 (

s)

0.7x 0.7x

0.6x 0.7x
0.6x 0.6x

SAR SAR+FAK vanilla DP

1.0

1.2

1.4

e
p

o
ch

 t
im

e
 s

ca
lin

g

SAR SAR+FAK vanilla DP

(a)

4 8 16
machines

0

5

10

15

20

p
e
a
k

m
e
m

o
ry

 (
G

B
)

1.0x

1.8x

1.1x

1.9x

1.1x

2.1x

SAR SAR+FAK vanilla DP

0

1

2

3

4

m
e
m

o
ry

 s
ca

lin
g

SAR SAR+FAK vanilla DP

(b)

Figure 4. Epoch time and peak memory consumption per worker
when training a 3-layer GAT network on ogbn-products. The
scaling numbers in the bars are relative to SAR.

& Wu, 2021), and are significantly faster than full-batch
or sampling-based training methods that use learnable mes-
sages. Yet, they are less general than traditional GNNs, and
have not yet been successfully applied to link prediction or
graph property prediction tasks, tasks at which traditional
GNNs perform extremely well (Zhang et al., 2020; Li et al.,
2020).

While we described SAR primarily in the context of full-
batch GNN training, the underlying idea is generally ap-
plicable to any domain-parallel training situation where
the input is partitioned across multiple workers, and each
worker’s output depends on parts of the inputs to other work-
ers. One example is spatially-parallel convolutional neural
networks (Dryden et al., 2019; Jin et al., 2018). We plan
on open-sourcing our general implementation of SAR to
enable memory-efficient distributed full-batch training of
GNNs, and to provide the tools needed to apply SAR to
other distributed training problems.

32 64 128
machines

0

20

40

60

80

e
p
o
ch

 t
im

e

(s
) 1.2x

1.1x

1.2x

SAR vanilla DP

1.00

1.05

1.10

1.15

e
p
o
ch

 t
im

e
 s

ca
lin

g

SAR vanilla DP

(a)

32 64 128
machines

0

50

100

150

p
e
a
k

m
e
m

o
ry

(G

B
)

1.6x

1.8x

2.0x

SAR vanilla DP

1

2

3

4

m
e
m

o
ry

 s
ca

lin
g

SAR vanilla DP

(b)

Figure 5. Epoch time and peak memory consumption per worker
when training a 3-layer GraphSage network on ogbn-papers100M.

32 64 128
machines

0

50

100

150

e
p
o
ch

 t
im

e
 (

s)

0.7x

OOM

0.7x 0.7x

0.9x

0.6x

SAR SAR+FAK vanilla DP

0.8

1.0

1.2

1.4

e
p
o
ch

 t
im

e
 s

ca
lin

g

SAR SAR+FAK

(a)

32 64 128
machines

0

50

100

150

p
e
a
k

m
e
m

o
ry

 (
G

B
)

1.0x

OOM

1.0x

3.6x

1.0x

3.9x

SAR SAR+FAK vanilla DP

1

2

3

4

m
e
m

o
ry

 s
ca

lin
g

SAR SAR+FAK

(b)

Figure 6. Epoch time and peak memory consumption per worker
when training a 3-layer GAT network on ogbn-papers100M. The
scaling numbers in the bars are relative to SAR.

Sequantial Aggregation and Rematerialization for Training Large GNNs

REFERENCES

Oneccl. https://github.com/oneapi-src/
oneCCL. Accessed: 2021-10-5.

torch ccl. https://github.com/intel/
torch-ccl. Accessed: 2021-10-5.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. arXiv
preprint arXiv:1710.10568, 2017.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
arXiv preprint arXiv:2004.05718, 2020.

Dryden, N., Maruyama, N., Benson, T., Moon, T., Snir,
M., and Essen, B. V. Improving strong-scaling of cnn
training by exploiting finer-grained parallelism. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 210–220. IEEE, 2019.

Gholami, A., Azad, A., Jin, P., Keutzer, K., and Buluc, A. In-
tegrated model, batch, and domain parallelism in training
neural networks. In Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures, pp.
77–86, 2018.

Gilmer, J., Schoenholz, S., Riley, P., Vinyals, O., and Dahl,
G. Neural message passing for quantum chemistry. In
International Conference on Machine Learning, pp. 1263–
1272. PMLR, 2017.

Gomez, A., Ren, M., Urtasun, R., and Grosse, R. The re-
versible residual network: Backpropagation without stor-
ing activations. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
pp. 2211–2221, 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Huang, Q., He, H., Singh, A., Lim, S.-N., and Benson,
A. Combining label propagation and simple models
out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Keutzer, K., Stoica, I., and Gonzalez, J. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. arXiv preprint arXiv:1910.02653, 2019.

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Improv-
ing the accuracy, scalability, and performance of graph
neural networks with roc. Proceedings of Machine Learn-
ing and Systems, 2:187–198, 2020.

Jin, P., Ginsburg, B., and Keutzer, K. Spatially parallel
convolutions. 2018.

Karypis, G. and Kumar, V. Metis: A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
1997.

Kipf, T. and Welling, M. Semi-supervised classification with
graph convolutional networks. International Conference
on Learning Representations, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. arXiv preprint arXiv:1810.05997, 2018.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739, 2020.

Li, G., Müller, M., Ghanem, B., and Koltun, V. Training
graph neural networks with 1000 layers. arXiv preprint
arXiv:2106.07476, 2021.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In International Conference on Ma-
chine Learning, pp. 3835–3845. PMLR, 2019.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L.,
and Dai, Y. Neugraph: parallel deep neural network
computation on large graphs. In 2019 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19), pp. 443–
458, 2019.

Md, V., Misra, S., Ma, G., Mohanty, R., Georganas, E.,
Heinecke, A., Kalamkar, D., Ahmed, N., and Avancha,
S. Distgnn: Scalable distributed training for large-scale

https://github.com/oneapi-src/oneCCL
https://github.com/oneapi-src/oneCCL
https://github.com/intel/torch-ccl
https://github.com/intel/torch-ccl

Sequantial Aggregation and Rematerialization for Training Large GNNs

graph neural networks. arXiv preprin tarXiv:2104.06700,
2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32:8026–8037, 2019.

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bron-
stein, M., and Monti, F. Sign: Scalable inception graph
neural networks. arXiv preprint arXiv:2004.11198, 2020.

Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Schlichtkrull, M., Kipf, T., Bloem, P., van den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Shi, Y., Huang, Z., Feng, S., and Sun, Y. Masked
label prediction: Unified massage passing model
for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Sun, C. and Wu, G. Scalable and adaptive graph neural net-
works with self-label-enhanced training. arXiv preprint
arXiv:2104.09376, 2021.

Tripathy, A., Yelick, K., and Buluç, A. Reducing com-
munication in graph neural network training. In SC20:
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1–14. IEEE,
2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li,
M., Zhou, J., Huang, Q., Ma, C., et al. Deep graph library:
Towards efficient and scalable deep learning on graphs.
2019.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

Xu, K., Li, C., Tian, Y., Sonobe, T., ichi Kawarabayashi,
K., and Jegelka, S. Representation learning on graphs

with jumping knowledge networks. In International Con-
ference on Machine Learning, pp. 5453–5462. PMLR,
2018.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based inductive
learning method. arXiv preprint arXiv:1907.04931, 2019.

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. arXiv preprint arXiv:1802.09691, 2018.

Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Revisiting
graph neural networks for link prediction. arXiv preprint
arXiv:2010.16103, 2020.

Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X.,
Gan, Q., Zhang, Z., and Karypis, G. Distdgl: distributed
graph neural network training for billion-scale graphs.
In 2020 IEEE/ACM 10th Workshop on Irregular Appli-
cations: Architectures and Algorithms (IA3), pp. 36–44.
IEEE, 2020.

A SAR AND RELATIONAL GCNS

SAR is a general distributed GNN training method that is
also applicable to heterogeneous graphs. We use SAR to
train a Relational-GCN (R-GCN) (Schlichtkrull et al., 2018)
on ogbn-mag, which is a heterogeneous graph dataset with
1.9 million nodes, 21 million edges, and 4 edge types. A
R-GCN layer is described by:

hl+1
i = σ(

∑
r∈R

∑
j∈N r

i

1

|N r
i |
Wl

rh
l
j), (4)

where hli is the feature vector of node i at layer l, R is
the set of all relations, N r

i is the set of neighbors of node
i which connect to node i using the relation r. Wl

r are
relation-specific learnable parameters in layer l.

We can use several methods to reduce the number of learn-
able parameters (the Wl

rs). One common method is to
represent these parameters as linear combinations of few
shared basis tensors:

Wl
r =

B∑
b=1

alrbV
l
b, (5)

where B is the number of basis tensors, Vl
b are the basis

tensors, and arb are relation-specific coefficients.

Note that the aggregation operator of R-GCN has learnable
parameters, and backpropagating gradients to these learn-
able parameters (the Wl

rs) requires the values of the layer’s
input features (hl). As described in Section 3.2, SAR would
thus need to re-fetch remotely stored node features during

Sequantial Aggregation and Rematerialization for Training Large GNNs

the backward pass to correctly calculate the gradients (case
2 in Section 3.2).

We directly use DGL’s RelGraphConv layer to implement
a 3-layer R-GCN network with hidden layer sizes of 256.
Figure 7a shows the run-time scaling behavior. Since SAR
incurs extra communication and computation overhead to
re-fetch remote features and reconstruct the computational
graph during the backward pass, its epoch run-time lags
behind vanilla Domain Parallel (DP) training. However,
as shown in Fig.7b, SAR is significantly more memory
efficient, requiring only 26% to 37% of the memory needed
by vanilla DP training.

4 8 16
machines

0

5

10

15

20

ep
oc

h
tim

e
 (s

) 0.9x

0.8x
0.7x

SAR vanilla DP

1.0

1.5

2.0

ep
oc

h
tim

e
sc

al
in

g
SAR vanilla DP

(a)

4 8 16
machines

0

5

10

15

20

25

pe
ak

 m
em

or
y

 (G
B)

3.8x

3.2x

2.7x

SAR vanilla DP

1

2

3

4

m
em

or
y

sc
al

in
g

SAR vanilla DP

(b)

Figure 7. Epoch time and peak memory consumption per worker
when training a 3-layer R-GCN network on ogbn-mag.

B CONVERGENCE SPEED OF FULL-BATCH
TRAINING

A full-batch GNN training method only updates the GNN
parameters at the end of each epoch/iteration. This is in
contrast to sampling-based methods which may update the
parameters after every mini-batch of sampled graphs. More
frequent parameter updates is one potential advantage of
sampling-based GNN training methods, even though these
updates might be biased due to the incomplete neighbor-
hoods in sampled graphs.

We show that full-batch training converges after a reason-
able number of epochs/weight updates. Figure 8 shows the
training curve for full-batch training on ogbn-papers100M.
We used a 3-layer GraphSage network with hidden layer size

of 256 and batch normalization between all layers. We ran
experiments with and without label augmentation (Shi et al.,
2020). As shown in Fig. 8, training practically converges
after 100 epochs,

Full-batch GNN training methods typically compute the
feature vectors of all nodes in the graph at each layer. Cur-
rent sampling-based methods, however, usually construct
what is known as Message Flow Graphs (MFGs). In node
classification tasks, MFGs allow sampling-based method
to only compute the node features at each layer which will
affect the classification output at the labeled nodes. This
is illustrated in Fig. 9 which shows an example graph with
6 nodes, 10 edges, and only one labeled node. The figure
shows the message passing edges in a 2-layer GNN. Since
the gradient only backpropagtes from the labeled node, we
only need to update the black nodes at each layer, as these
are the only nodes that affect the output.

We used DGL’s MFGs to optimize SAR’s computation,
and avoid updating unnecessary nodes at each layer. As
shown in Fig. 8, this pushes the epoch run-time down to 10.7
seconds for a vanilla GraphSage network and 20.3 seconds
for a GraphSage network that uses label augmentation.

0 20 40 60 80 100

epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

u
ra

cy

without label aug 10.7s/epoch

with label aug 20.3s/epoch

Figure 8. Training curve when using SAR to train a 3-layer Graph-
Sage network on ogbn-papers100M. We trained on 32 2-socket
machines equipped with Intel’s 36-core IceLake processors and
connected using Infiniband HDR 200Gb/s interconnects.

layer 1

layer 2

input

L

L

L

L Labelled node updated node

Figure 9. Example graph with one labeled node showing the nodes
that need to be updated at each layer of a 2-layer GNN.

