
PUFFERFISH: COMMUNICATION-EFFICIENT MODELS AT NO EXTRA COST

Hongyi Wang 1 Saurabh Agarwal 1 Dimitris Papailiopoulos 2

ABSTRACT
To mitigate communication overheads in distributed model training, several studies propose the use of compressed
stochastic gradients, usually achieved by sparsification or quantization. Such techniques achieve high compression
ratios, but in many cases incur either significant computational overheads or some accuracy loss. In this work, we
present PUFFERFISH, a communication and computation efficient distributed training framework that incorporates
the gradient compression into the model training process via training low-rank, pre-factorized deep networks.
PUFFERFISH not only reduces communication, but also completely bypasses any computation overheads related
to compression, and achieves the same accuracy as state-of-the-art, off-the-shelf deep models. PUFFERFISH can
be directly integrated into current deep learning frameworks with minimum implementation modification. Our
extensive experiments over real distributed setups, across a variety of large-scale machine learning tasks, indicate
that PUFFERFISH achieves up to 1.64× end-to-end speedup over the latest distributed training API in PyTorch
without accuracy loss. Compared to the Lottery Ticket Hypothesis models, PUFFERFISH leads to equally accurate,
small-parameter models while avoiding the burden of “winning the lottery”. PUFFERFISH also leads to more
accurate and smaller models than SOTA structured model pruning methods.

1 INTRODUCTION

Distributed model training plays a key role in the success
of modern machine learning systems. Data parallel training,
a popular variant of distributed training, has demonstrated
massive speedups in real-world machine learning applica-
tions and systems (Li et al., 2014; Dean et al., 2012; Chen
et al., 2016a). Several machine learning frameworks such as
TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al.,
2019) come with distributed implementations of popular
training algorithms, such as mini-batch SGD. However, the
empirical speed-ups offered by distributed training, often
fall short of a best-case linear scaling. It is now widely
acknowledged that communication overheads are one of
the key sources of this saturation phenomenon (Dean et al.,
2012; Seide et al., 2014; Strom, 2015; Qi et al., 2017; Grubic
et al., 2018).

Communication bottlenecks are attributed to frequent gra-
dient updates, transmitted across compute nodes. As the
number of parameters in state-of-the-art (SOTA) deep mod-
els scales to hundreds of billions, the size of communicated
gradients scales proportionally (He et al., 2016; Huang et al.,
2017; Devlin et al., 2018; 2019; Brown et al., 2020). To

1Department of Computer Sciences, University of Wisconsin-
Madison, 2Department of Electrical and Computer Engineering,
University of Wisconsin-Madison. Correspondence to: Hongyi
Wang <hongyiwang@cs.wisc.edu>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

reduce the cost of communicating model updates, recent
studies propose compressed versions of the computed gra-
dients. A large number of recent studies revisited the idea
of low-precision training as a means to reduce communica-
tion (Seide et al., 2014; De Sa et al., 2015; Alistarh et al.,
2017; Zhou et al., 2016; Wen et al., 2017; Zhang et al., 2017;
De Sa et al., 2017; 2018; Bernstein et al., 2018a; Konečnỳ
et al., 2016). Other approaches for low-communication
training focus on sparsification of gradients, either by thresh-
olding small entries or by random sampling (Strom, 2015;
Mania et al., 2015; Suresh et al., 2016; Leblond et al., 2016;
Aji & Heafield, 2017; Konečnỳ & Richtárik, 2016; Lin et al.,
2017; Chen et al., 2017; Renggli et al., 2018; Tsuzuku et al.,
2018; Wang et al., 2018; Vogels et al., 2019).

However, the proposed communication-efficient training
techniques via gradient compression usually suffer from
some of the following drawbacks: (i) The computation
cost for gradient compression (e.g., sparsification or quanti-
zation) can be high. For instance, ATOMO (Wang et al.,
2018) requires to compute gradient factorizations using
SVD for every single batch, which can be computation-
ally expensive for large-scale models. (ii) Existing gradient
compression methods either do not fully utilize the full
gradients (Alistarh et al., 2017; Wen et al., 2017; Bern-
stein et al., 2018a; Wang et al., 2018) or require additional
memory. For example, the “error feedback” scheme (Seide
et al., 2014; Stich et al., 2018; Karimireddy et al., 2019)
utilizes stale gradients aggregated in memory for future
iterations, but requires storing additional information pro-



PUFFERFISH: Communication-ef�cient Models At No Extra Cost

portional to the model size. (iii) Signi�cant implementa-
tion efforts are required to incorporate an existing gradient
compression technique within high-ef�ciency distributed
training APIs in current deep learning frameworkse.g.,
DistributedDataParallel (DDP) in PyTorch.

Due to the above shortcomings of current communication-
ef�cient techniques, it is of interest to explore the feasibility
of incorporating elements of the gradient compression step
into the model architecture itself. If this is feasible, then
communication ef�ciency can be attained at no extra cost.
In this work, we take a �rst step towards bypassing the gra-
dient compression step via training low-rank, pre-factorized
deep network, starting from full-rank counterparts. We ob-
serve that training low-rank models from scratch incurs
non-trivial accuracy loss. To mitigate that loss, instead of
starting from a low-rank network, we initialize at a full-rank
counterpart. We train for a small fraction,e.g., 10% of
total number epochs, with the full-rank network, and then
convert to a low-rank counterpart. To obtain such a low-
rank model we apply SVD on each of the layers. After the
SVD step, we use the remaining 90% of the training epochs
to �ne-tune this low-rank model. The proposed method
bares similarities to the “Lottery Ticket Hypothesis” (LTH)
(Frankle & Carbin, 2018), in that we �nd “winning tickets”
within full-rank/dense models, but without the additional
burden of “winning the lottery”. Winning tickets seem to be
in abundance once we seek models that are sparse in their
spectral domain.

Our contributions. In this work, we proposePUFFER-
FISH, a computation and communication ef�cient distributed
training framework.PUFFERFISH takes any deep neural
network architecture and �nds a pre-factorized low-rank
representation.PUFFERFISHthen trains the pre-factorized
low-rank network to achieve both computation and commu-
nication ef�ciency, instead of explicitly compressing gradi-
ents.PUFFERFISHsupports several types of architectures
including fully connected (FC), convolutional neural nets
(CNNs), LSTMs, and Transformer networks (Vaswani et al.,
2017). AsPUFFERFISHmanipulates the model architectures
instead of their gradients, it is directly compatible with all
SOTA distributed training frameworks,e.g., PyTorch DDP
and BytePS (Jiang et al., 2020).

We further observe that direct training of those pre-
factorized low-rank deep networks leads to non-trivial accu-
racy loss, especially for large-scale machine learning tasks,
e.g., ImageNet (Deng et al., 2009). We develop two tech-
niques for mitigating this accuracy loss: (i) ahybrid archi-
tectureand (ii) vanilla warm-up training. The effectiveness
of these two techniques is justi�ed via extensive experi-
ments.

We provide experimental results over real distributed sys-
tems and large-scale vision and language processing tasks.

Figure 1.We propose to replace fully connected layers represented
by a matrixW , by a set of trainable factorsUV T , and represent
each of theN convolutional �lters of each conv layer as a linear
combination ofN

R �lters. This latter operation can be achieved
by using fewer �lters per layer, and then applying a trainable
up-sampling embedding to the output channels.

We comparePUFFERFISHagainst a wide range of SOTA
baselines: (i) communication-ef�cient distributed train-
ing methodse.g., POWERSGD (Vogels et al., 2019) and
SIGNUM (Bernstein et al., 2018a); (ii) structured pruning
methods,e.g., theEarly Bird Ticket(EB Train) (You et al.,
2019); and model sparsi�cation method,e.g., the iterative
pruning algorithm in LTH (Frankle & Carbin, 2018). Our
experimental results indicate thatPUFFERFISHachieves bet-
ter model training ef�ciency compared toPOWERSGD,
SIGNUM, and LTH models. PUFFERFISH also leads to
smaller and more accurate model compared to EB Train. We
further show that the performance ofPUFFERFISHremains
stable undermixed-precision training.

Related work. PUFFERFISHis closely related to the work
on communication-ef�cient distributed training methods. To
reduce the communication cost in distributed training, the
related literature has developed several methods for gradient
compression. Some of the methods use quantization over the
gradient elements (Seide et al., 2014; Alistarh et al., 2017;
Wen et al., 2017; Lin et al., 2017; Luo et al., 2017; Bernstein
et al., 2018a; Tang et al., 2019; Wu et al., 2018). Other
methods study sparsifying the gradients in the element-wise
or spectral domains (Lin et al., 2017; Wang et al., 2018;
Stich et al., 2018; Vogels et al., 2019). It has also been
widely observed that adopting the “error feedback” scheme
is generally helpful for gradient compression methods to
achieve better �nal model accuracy (Stich et al., 2018; Wu
et al., 2018; Karimireddy et al., 2019; Vogels et al., 2019).
Compared to the previously proposed gradient compression
methods,PUFFERFISHmerges the gradient compression
into model training, thus achieves communication-ef�ciency
at no extra cost.

PUFFERFISHis also closely related to model compression.
Partially initialized bydeep compression(Han et al., 2015),
a lot of research proposes to remove the redundant weights
in the trained neural networks. The trained neural networks


