PIPEMARE: ASYNCHRONOUS PIPELINE PARALLEL DNN TRAINING

Bowen Yang *1 Jian Zhang *1 Jonathon Li1 Christopher Ré1 2 Christopher R. Aberger1 Christopher De Sa1 3

ABSTRACT

Pipeline parallelism when training neural networks enables models to be partitioned spatially, which can lead to overall higher hardware utilization. Unfortunately, to preserve the statistical efficiency of sequential training, existing pipeline parallel training techniques sacrifice hardware efficiency by decreasing pipeline utilization or incurring extra memory costs. In this paper, we investigate to what extent these sacrifices will be necessary on the emerging class of new dataflow hardware accelerators. We devise PipeMare, a simple yet robust training method that tolerates asynchronous updates during pipeline parallel execution without sacrificing utilization or memory, which allows efficient use of fine-grained pipeline parallelism. Concretely, when tested on ResNet and Transformer networks, asynchrony enables PipeMare to use up to $2.7 \times$ less memory or get $14.3 \times$ higher pipeline utilization, with similar model quality, when compared to state-of-the-art synchronous pipeline parallel training techniques.

1 INTRODUCTION

Recently there has been an explosion of interest in hardware chips designed for training deep neural networks (Feldman, 2019; Jouppi et al., 2017; Prabhakar et al., 2018; Ward-Foxton; 2019a;b). These works rethink how computations are mapped to hardware, which can result in huge speedups. One of the central ideas that has emerged out of this effort is that model parallelism can be leveraged in place of, or in combination with, data parallelism. Model parallelism entails partitioning neural network operators spatially across hardware resources while pipelining the computation between them. Training a neural network in this model-parallel fashion is called pipeline parallelism; pipeline parallelism is the core execution mode for many of the new hardware accelerators entering the market (Feldman, 2019; Prabhakar et al., 2018; Ward-Foxton; 2019a).

Pipeline-parallel (dataflow) hardware accelerators can lead to higher effective hardware utilization when compared to that of traditional accelerators like a GPU. A core advantage of these new hardware accelerators is that they can eliminate context switching. Without pipeline parallelism, GPUs run neural network training on a kernel-by-kernel basis. Each new low-level operator or kernel results in a context switch: it must be dynamically dispatched from the CPU to the GPU, which can incur costly time delays and poor hardware utilization, especially when operator’s computational intensity does not match the computational resources available on the accelerator. Instead, with pipeline parallelism, context switching is no longer necessary and multiple operators can be simultaneously mapped across the same accelerator. This is made possible by new accelerators which provide large amounts of static random-access memory (SRAM) such that the memory for an entire neural network can reside in the SRAM on chip (Feldman, 2019; Ward-Foxton; 2019a). Therefore, operators can be spatially fixed across compute resources, and the entire computation graph is able to run in a single context without dynamic dispatching.

Despite the hardware efficiency benefits of pipeline parallelism, existing pipeline parallel training techniques have focused purely on the low-pipeline-depth distributed setting (only across accelerators), not the high-pipeline-depth settings for which new hardware accelerators are being designed (both within and across accelerators). Because of this, existing pipeline parallel training techniques found it sufficient to sacrifice hardware efficiency to preserve a property called “synchronous execution,” which is believed to be necessary to maintain statistical efficiency (e.g. classification accuracy). Synchronous execution in this context means that the weights used for computation during forward propagation are the same as those used to compute the gradients during backward propagation (as if the gradient were computed in one step). Existing approaches preserve synchronous execution by trading off pipeline utilization (by adding bubbles into the pipeline, which underutilizes
PipeMare: Asynchronous Pipeline Parallel DNN Training

Figure 1. Different extremes of pipelining modes. Orange squares represent model weight memory, blue circles represent active pipeline compute, green clouds represent pipeline bubbles, and dashed gray lines separate pipeline stages. PipeMare fully utilizes compute while minimizing weight memory footprint.

<table>
<thead>
<tr>
<th></th>
<th>Per Stage (i)</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tau_{\text{fwd},i}$</td>
<td>$\tau_{\text{bkwd},i}$</td>
</tr>
<tr>
<td>PipeDream</td>
<td>$\frac{2(P-i)+1}{N}$</td>
<td>$\tau_{\text{fwd},i}$</td>
</tr>
<tr>
<td>GPipe</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PipeMare</td>
<td>$\frac{2(P-i)+1}{N}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Characterization of pipeline parallel training methods. τ_{fwd} and τ_{bkwd} are the pipeline delays for model weights in the forwards and backwards pass. W is one copy of the weights. P is the number of pipeline stages. N is the number of microbatches in a minibatch. i indexes the pipeline stage. $| (w)_i |$ denotes the number of weights in the ith pipeline stage.

the hardware) and/or memory (by storing additional weight copies for microbatching) (Harlap et al., 2018; Huang et al., 2018). Importantly, these costs increase with the pipeline depth (as illustrated in Figure 1) even though the intention of increasing the pipeline depth is to improve throughput. While these results are sufficient in the low-pipeline depth setting, this poses a massive challenge for the type of high-depth, fine-grained pipeline parallelism of interest to new hardware accelerators.

Motivated by enabling fine-grained pipeline parallelism on new hardware accelerators, in this paper we study how to remove hardware overheads during pipeline parallel training by revisiting the fundamental question: is preserving synchronous execution necessary during neural network training? Our contributions and outline are as follows.

- In Section 2, we introduce a model for asynchronous pipeline-parallel training, that, by eschewing synchronous execution, maximizes hardware efficiency by avoiding both pipeline bubbles and substantial memory increases.

- Using this model, in Section 3 we propose PipeMare, a system of two techniques to improve the statistical efficiency of asynchronous pipeline training.

- In Section 4, due to the lack of publicly available dataflow accelerators, we simulate PipeMare’s asynchronous training algorithm to evaluate it’s effectiveness on both ResNet50 and Transformer models. We show that PipeMare can achieve competitive model accuracy with better pipeline utilization than previous approaches (GPipe and PipeDream).

1.1 Related Work

PipeDream. PipeDream (Harlap et al., 2018) is a pipeline parallel distributed training technique used to reduce high communication-to-computation ratios. PipeDream showed up to 5x speedups in time-to-given-accuracy metrics when compared to existing data parallel training techniques. Unlike PipeMare, PipeDream is one type of memory hungry pipelining approach; their core technique is called weight stashing which maintains an additional copy of the weights for each minibatch flowing through the pipeline. This ensures synchronous computation with a fixed pipeline delay update.

GPipe. GPipe (Huang et al., 2018) is a pipeline parallel distributed training technique originally deployed on TPUs (Jouppi et al., 2017). Unlike PipeMare, GPipe is one type of throughput poor pipelining approach; the core tech-
Hogwild! Asynchronous training has been studied in several other contexts, the most well-known of which is Hogwild! (Recht et al., 2011b). In Hogwild! settings, as in pipeline-parallel settings, gradients are computed based on delayed versions of weights. However, these delays are random and can vary from step to step and weight to weight, unlike the fixed pipeline delay of the pipeline-parallel setting. In Appendix E we show PipeMare can also improve final model quality in this setting (Recht et al., 2011a).

2 PRELIMINARIES

Pipeline-parallel training of a DNN works by decomposing the O operators of the neural network into P pipeline stages, each of which is assigned to a parallel worker (this worker can range from a fully distributed machine to a section of silicon on an accelerator). An operator here refers to kernel level operators such as matrix multiplication, ReLU, or convolution. Each of these operators can be placed in its own pipeline stage or many of them (like matrix multiplication, bias addition, and ReLU or convolution and normalization) can be fused in the same stage (to save memory or balance stage latencies). While processing a minibatch of size B, each pipeline stage processes M samples at a time, where M is called the microbatch size and $M \leq B$. We use N to represent the number of microbatches in a minibatch (or $N = \lceil \frac{B}{M} \rceil$) and let i represent a pipeline stage. Operators can be associated with weights: we let W represent the total size of all these weights. The resulting microbatch gradients are accumulated into gradient buffers, and weights are updated only at minibatch boundaries. Previous work studied the distributed case where $P \ll O$: we call this coarse-grained pipeline parallelism. Here, we are interested in the case of fine-grained pipeline parallelism, where $P \approx O$. Using these definitions, we compare PipeMare to the existing pipeline parallel training techniques of PipeDream and GPipe in Figure 1 and Table 1 (see Appendix A.1 for the derivation of each). The tradeoff between pipeline utilization, weight memory, statistical accuracy and pipeline stages are summarized in Figure 2 and

Figure 2. The impact of the number of pipeline stages on pipeline utilization, weight memory, and final model quality across different pipeline parallel training methods on a ResNet50 for image classification with the CIFAR10 dataset. Unlike PipeMare, GPipe and PipeDream suffer hardware costs (either throughput or the sum of weight and optimizer memory) proportional to the number of pipeline stages. Still, PipeMare achieves a final model quality competitive with the best technique.
Pipeline utilization (Util) is the percentage of pipeline stages that are not idle (stalled) at any given time. In the best case, when the number of active pipeline stages \(P_{\text{active}}\) equals the total number of pipeline stages \(P\), we get 100% pipeline utilization or Util = \(\frac{P_{\text{active}}}{P} = 1.0\). Note that throughput is linearly proportional to Util.

Delay. The statistical effect of using pipeline-parallel training is characterized by the pipeline delay: the number of optimizer steps that pass between when the weights are read to compute a gradient and when that gradient is used to update the weights. In a standard backpropagation algorithm, each weight is read twice—once in the forward pass, and again in the backward pass—so there are two delay values, \(\tau_{\text{fwd}}\) and \(\tau_{\text{bkwd}}\), which can vary by stage. Intuitively, \(\tau_{\text{fwd}}\) corresponds to the delay between a weight’s forward pass and its update. The earlier a pipeline stage, the larger \(\tau_{\text{fwd}}\) value, i.e., \(\tau_{\text{fwd},i} \propto (P - i)\) for the \(i\)th stage. Similarly, \(\tau_{\text{bkwd}}\) is the delay between a weight’s backward pass and its update. We can write this out formally as

\[
w_{t+1} = w_t - \alpha \nabla f_t(w_{\text{fwd},t}, u_{\text{bkwd},t})
\]

where \(w_t\) are the weight values after \(t\) gradient steps, \(\nabla f_t\) is the gradient function for the \(t\)-th minibatch, and \(u_{\text{fwd},t}\) and \(u_{\text{bkwd},t}\) are the (delayed) values of the weights that are used in the forward and backward passes, respectively, for computing \(\nabla f_t\). The weights \(w_t\) can be broken up into weight vectors for each stage: \(\{w_t\}_1\) for stage 1, \(\{w_t\}_2\) for stage 2, et cetera, such that \(w_t = [\{w_t\}_1, \{w_t\}_2, \ldots, \{w_t\}_P]\). Concretely, the weight value \(\{w_t\}_i\) for stage \(i\) denotes the value of the weights for that stage after \(t\) gradient updates have been written to it (this means \(w_t\) as a whole is not necessarily the value of the weights in memory at any time \(t\)), and the delayed weight values are defined for each pipeline stage \(i \in \{1, \ldots, P\}\) as

\[
(\{w_{\text{fwd},t}\}_i) = (w_{t-\tau_{\text{fwd},i}})_i
\]

and

\[
(\{w_{\text{bkwd},t}\}_i) = (w_{t-\tau_{\text{bkwd},i}})_i
\]

where \((\cdot)_i\) denotes selecting the weights for the \(i\)th stage. Here, we are letting \(\nabla f_t(u_{\text{fwd},t}, u_{\text{bkwd},t})\) denote the value of the gradient that would be computed by the backpropagation algorithm using the weights \(u_{\text{fwd},t}\) in the forward pass and weights \(u_{\text{bkwd},t}\) in the backward pass. That is, \(\nabla f_t\) is a function of two weight vectors, rather than one (as is usual for SGD), because the pipeline-parallel model may use different values for the weights in the forward and backward pass. Synchronous execution corresponds to the case of \(u_{\text{fwd},t} = u_{\text{bkwd},t}\), which requires setting \(\tau_{\text{fwd}} = \tau_{\text{bkwd}}\). For the rest of this paper, we will use \(\nabla f_t\) with two arguments to denote this backpropagation-with-different-weights gradient, and use \(\nabla f_t\) with one argument to denote the ordinary mathematical gradient (under this notation, \(\nabla f_t(w, w) = \nabla f_t(w)\) by definition). Techniques to date have not shown how to train well when \(\tau_{\text{fwd}} - \tau_{\text{bkwd}} \neq 0\).

3 PipeMare

We design a strategy called PipeMare for asynchronous pipeline-parallel training of deep neural networks. PipeMare combines two techniques, which we introduce in this section, motivated by theory. For each technique, we start by modeling a problem we want to address.

Figure 3. The impact of the number of pipeline stages on pipeline utilization, weight and optimizer memory, and final model quality across different pipeline parallel training methods on a 12-layer Transformer model performing machine translation on the IWSLT14 dataset. Similar to image classification task, GPipe and PipeDream suffer hardware costs proportional to the number of pipeline stages. Without these costs, PipeMare can achieve a final model quality close to the best technique and with a few warm-up epochs, PipeMareW (with warmup epochs, see Section 4) can further close the gap. The target BLEU score chosen to evaluate the amortized pipeline utilization of PipeMareW is 33.9.
by studying fixed-delay asynchronous gradient descent on a one-dimensional convex quadratic objective. Even this very simple “toy” model has non-trivial behavior, and (as we will see) it exhibits many phenomena of interest seen in more complicated settings, and it motivates techniques to address them that work even for much more complicated objectives (such as for DNNs). Consider a one-dimensional quadratic objective \(f(w) = \lambda w^2 / 2 \) for some fixed curvature \(\lambda > 0 \). Suppose that we run fixed-delay asynchronous SGD on this model, using gradient samples of the form

\[
\nabla f_t(u_{\text{fwd},t}, u_{\text{bkwd},t}) = \lambda u_{\text{fwd},t} - \eta_t = \lambda w_{t-\tau} - \eta_t
\]

where \(\eta_t \) is some gradient estimation noise, which we assume is bounded and depends on \(t \). This implicitly assumes that the delays for all the weights are the same and equal to some fixed parameter \(\tau = \tau_{\text{fwd}} \), with no delay discrepancy (we will consider delay discrepancy later in Section 3.2). Running SGD in this setting has the update step

\[
w_{t+1} = w_t - \alpha \nabla f_t(\cdots) = w_t - \alpha \lambda w_{t-\tau} + \alpha \eta_t. \quad (1)
\]

Motivating example in deep learning Theorem 4 illustrates that, just as we saw for the quadratic model, pipeline-parallel SGD can not be run naively with the same hyperparameters as would be used in the baseline model, since this would significantly negatively impact loss. Figure 4 shows why: pipeline-parallel SGD is diverging to infinity, completely failing to learn, even for a step size scheme for which the sequential model achieves state-of-the-art results. In the next section we will show that this same phenomena we observe in deep learning matches our results on the quadratic model. We use this quadratic model to understand the phenomena further and apply our findings back to deep learning examples. In more detail, for ResNet50 with standard hyperparameters, Figure 4 shows that this phenomenon is caused by the delay: the red series shows that, even when \(\tau_{\text{fwd},i} = \tau_{\text{bkwd},i} \) in simulation, substantially large fixed delay can cause the system to diverge. Figure 4 also illustrates that this divergence is exacerbated by forward-backward delay discrepancy: the orange series shows that even when the learning rate and delay \(\tau_{\text{fwd},i} \) are kept the same, adding delay discrepancy can cause the algorithm to diverge.

3.1 Learning rate rescheduling We theoretically derive our first technique—rescheduling the step size to be inversely proportional to the delay—and evaluate its tradeoffs on some DNN tasks.

The problem. We might hope that existing hyperparameters used for sequential SGD would “just work” for training in the asynchronous pipeline parallel setting. Unfortunately, when we try running naively with a standard step size scheme, asynchronous pipeline parallel SGD can significantly underperform the synchronous baseline. This happens because a large value of \(\tau \) can cause SGD to diverge even when using a step size \(\alpha \) for which the baseline synchronous algorithm converges. This is shown in Figure 5(a), which simulates the quadratic model (5) with \(\lambda = 1 \), \(\alpha = 0.2 \), and \(\eta_t \sim N(0, 1) \), for various values of \(\tau \). Notice that for \(\tau = 10 \), the trajectory diverges quickly. In Section 3, we show that the same phenomenon can be observed for a ResNet50 network.

The theory. The first question we want to ask is: when will asynchronous pipeline-parallel SGD be stable on the
quadratic model? That is, for what values of the step size α will it be guaranteed that w_t remains bounded, no matter what (bounded) noise signal η we get from the gradient estimator? To answer this question, notice that (1) is a linear system, which can be written in terms of a companion matrix that stores all the state of the system as

$$
\begin{bmatrix}
 w_{t+1} \\
 w_{t} \\
 \vdots \\
 w_{t-\tau+1}
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & \cdots & 0 & -\alpha \lambda \\
 1 & 0 & \cdots & 0 & -\alpha \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 w_{t} \\
 w_{t-1} \\
 \vdots \\
 w_{t-\tau+1}
\end{bmatrix} + \begin{bmatrix}
 \alpha \eta_t \\
 0 \\
 \vdots \\
 \vdots \\
 0
\end{bmatrix}.
$$

If we call this companion matrix C, and call the vectorized version of w with its history W,

$$
W_{t+1} = CW_t + \alpha \eta_t e_1,
$$

(2)

where e_1 is the vector $[1 \ 0 \ \cdots \ 0]^T$. Linear systems of this type have solutions of the form

$$
w_t = \sum_{k=0}^{t-1} \alpha \eta_{t-k-1} \sum_{\omega} \rho_\omega(k) \cdot \omega^k,
$$

where the sum here ranges over the eigenvalues ω of the companion matrix, and each ρ_ω is a polynomial of degree less than the algebraic multiplicity of the eigenvalue ω.

Thus, the convergence of (2) is determined entirely by C’s eigenvalues, and it will be stable when all these eigenvalues lie inside the unit disk in the complex plane. C’s eigenvalues are the zeros of its characteristic polynomial

$$
p(\omega) = \omega^{\tau+1} - \omega^\tau + \alpha \lambda.
$$

(3)

So we want to find out for which values of α the roots of p must all lie inside the unit disk.

Lemma 1. The roots of the polynomial p of (3) all lie inside the unit disk if the step size α is

$$
0 \leq \alpha \leq \frac{2}{\lambda} \cdot \sin \left(\frac{\pi}{4\tau + 2} \right) = O \left(\frac{1}{\lambda \tau} \right).
$$

This lemma gives us theoretical insight that backs up our empirical observations: when the delay is larger, the step size must be set smaller to prevent instability and divergence. It also quantifies how much smaller, predicting that α should be set as $O(\tau^{-1})$. In Figure 5(b) we validate that our theory not only applies to 1D optimization problems, but also can accurately describe what happens when we run pipeline-parallel SGD on a simple 12-dimensional linear regression problem using the cspmall dataset (Chang & Lin, 2011); the algorithm diverges at precisely an $\alpha \propto \tau^{-1}$ slope, exactly what Lemma 1 predicts. In Appendix B.2 we extend this to momentum SGD showing that the $O(\tau^{-1})$ threshold is general, which motivates our use of Technique 1 with algorithms other than SGD such as Adam.

\footnote{To see why, consider the Jordan normal form of C, which will for each eigenvalue have a corresponding Jordan block of dimension equal to its algebraic multiplicity.}

The technique. To avoid the divergence we just characterized, the natural choice here is to divide the step size at each pipeline stage i by its delay τ_i. However, this is (1) problematic because it leads to very small step sizes which slow convergence, and (2) unnecessary because it divides the step size by τ even for later epochs where the base step size has already become small, as is usually done in deep learning (He et al., 2016; Vaswani et al., 2017). This motivates us to develop a step size scheme that (1) behaves like the $O(\tau^{-1})$ scheme for early epochs, and (2) degrades back to the baseline learning rate scheme for later epochs.

T1: Suppose that we are training a DNN. In SGD step k, assign the following step size to pipeline stage i:

$$
\alpha_{k,i} = \frac{\alpha_{k,\text{base}}}{\tau_i^{p_k}} \quad \text{where} \quad p_k = 1 - \min \left(\frac{k}{K}, 1 \right).
$$

(4)

where K is a hyperparameter representing a number of steps during which to adjust the learning rate, and $\alpha_{k,\text{base}}$ denotes the normal synchronous learning rate. We suggest K to be $\frac{1}{3}$ the length of the first phase of a fixed-step LR schedule (use this for the ResNet model) or five times the linear warmup steps of a schedule with a linear warmup phase (use this for the Transformer model).

3.2 Discrepancy correction (T2)

In Section 3.1, we analyzed a setting in which there was no delay discrepancy ($\tau_{\text{fwd}} = \tau_{\text{bkwd}}$). In this subsection, we try to understand the effect of delay discrepancy, again using our quadratic model. We then develop and evaluate a technique for “correcting” this discrepancy.

The problem. To model delay discrepancy, we now as-
sume gradient samples of the form
\[\nabla f_t(u_{\text{fwd}}, t, u_{\text{bkwd}}, t) = (\lambda + \Delta) \cdot w_{t-\tau_{\text{fwd}}} - \Delta \cdot w_{t-\tau_{\text{bkwd}}} - \eta_t \]
where \(\tau_{\text{fwd}} > \tau_{\text{bkwd}} \) are two different delays, and \(\Delta \) is a constant that measures the sensitivity of the gradients to discrepancy. We can think of this as the natural first-order (linear) approximation of \(\nabla f_t \) in the neighborhood of a stationary point—it models any affine function of \(u_{\text{fwd}} \) and \(u_{\text{bkwd}} \) that is consistent with the curvature \(\lambda \) when \(u_{\text{fwd}} = u_{\text{bkwd}} \). If \(\Delta = 0 \), we recover a model of our original zero-discrepancy setting, whereas for large-magnitude values of \(\Delta \), even a small delay discrepancy could be amplified to have a large effect on the gradient samples.

Delay discrepancy is problematic because it can amplify the divergence effect observed in Section 3.1. To illustrate, Figure 6(a) shows on the quadratic model (with \(\tau_{\text{fwd}} = 10, \tau_{\text{bkwd}} = 6, \lambda = 1, \) and \(\eta_t \sim \mathcal{N}(0, 1) \)) that a nonzero value of \(\Delta \) can cause divergence even for a value of \(\alpha \) and \(\tau \) where with \(\Delta = 0 \) (i.e. running PipeDream-style with no discrepancy) the trajectory would converge. In Section 3, we illustrate that, just as was the case for the divergence phenomenon of Section 3.1, on ResNet50 asynchronous SGD with a large enough \(\Delta \) will diverge even for values of \(\alpha \) and \(\tau \) for which PipeDream-style SGD converged. We seek to understand this phenomenon theoretically and to develop a technique to limit its effect.

The theory. With our new discrepancy-dependent samples, pipeline parallel SGD has the update step
\[w_{t+1} = w_t - \alpha(\lambda + \Delta)w_{t-\tau_{\text{fwd}}} + \alpha\Delta w_{t-\tau_{\text{bkwd}}} + \alpha\eta_t. \tag{5} \]

As before, we can analyze this for stability by finding the value of \(\alpha \) for which the roots of its characteristic polynomial lie inside the unit disk.

Lemma 2. For any \(\Delta > 0 \), there exists an \(\alpha > 0 \) with
\[\alpha \leq \min \left(\frac{2}{\Delta \cdot (\tau_{\text{fwd}} - \tau_{\text{bkwd}})}, \frac{2}{\lambda} \cdot \sin \left(\frac{\pi}{4\tau_{\text{fwd}} + 2} \right) \right) \]
such that at least one of the roots of the characteristic polynomial of (5) is outside the interior of the unit disk (that is, the discrepancy-dependent model updates will be unstable).

This lemma shows two important things: first, that the maximal stable step size is still inversely proportional to the delay, even with delay discrepancy; second, that for large values of \(\Delta \), in which the delay discrepancy has substantial effect on the gradient, the largest stable \(\alpha \) becomes smaller (although still inversely proportional to \(\tau \)). This models the behavior illustrated in Figure 6(a) where adding delay discrepancy exacerbates the divergence phenomenon.

The technique. As shown, delay discrepancy between the forward and backward passes can exacerbate the problem of divergence. If we could just compute \(\nabla f_t(u_{\text{fwd}}, t, u_{\text{fwd}}, t) \) directly, then this mismatch would not be a problem. Unfortunately, in our asynchronous pipeline parallel setting, we cannot compute this, as we no longer have \(u_{\text{fwd}, t} \) in memory by the time the backward pass comes around. To keep \(u_{\text{fwd}, t} \) stored in memory is possible, but undesirable as it would greatly increase memory usage (as in PipeDream). Instead, we decrease the gap between \(u_{\text{fwd}, t} \) and \(u_{\text{bkwd}, t} \) by approximating \(u_{\text{fwd}, t} \) without storing the full history of model weight values after \(u_{\text{fwd}, t} \), using a bit of extra memory to hold an approximation of the velocity of the weights.

T2: Instead of the assignment of \(u_{\text{bkwd}} \) from Section 3.1, set
\[(u_{\text{bkwd}}, t) = (w_{t-\tau_{\text{bkwd}}, t} - (\tau_{\text{fwd}, t} - \tau_{\text{bkwd}, t}) \delta_{t,i}, \]

where \(\delta_{t,i} \) is a accumulator that estimates the amount that \(w_i \) is changing over time. It is kept up to date by the update step \(\delta_{t+1,i} = \gamma_i \cdot \delta_{t,i} + (1 - \gamma_i) \cdot (w_{t+1,i} - w_{t,i}), \)

where \(\gamma_i \) is a decay rate parameter, assigned per-stage to \(\gamma_i = D(\tau_{\text{fwd}, t} - \tau_{\text{bkwd}, t}) \), where \(D \) is a tunable global hyper-parameter.

Essentially, this technique adjusts the value of the weights used in the backward pass by extrapolating what the weights were during the forward pass based on the recent average trajectory of the weights. Applying T2 on the quadratic model also results in an update step that can be modeled with a companion matrix; we analyzed this system—just as before—by considering that companion matrix’s eigenvalues. Doing this, we observed that T2 seems to increase the allowable range of \(\alpha \) for which the quadratic model is stable. This is illustrated in Figure 6(b).

4 **EXPERIMENTS**

We simulate PipeMare on two standard image recognition tasks and neural machine translation tasks to evaluate its effectiveness. Our evaluation supports the following two main claims:

- **PipeMare can enable more efficient end-to-end training on new dataflow accelerators.** We show that across two image recognition and two neural machine translation tasks, PipeMare can attain up to 14.3× higher pipeline utilization over the synchronous GPipe and uses up to 2.7× less weight and optimizer memory when compared to the synchronous PipeDream.

- **PipeMare achieves final model qualities similar to those attained by synchronous training.** We show that PipeMare at most has a top-1 test accuracy difference of 0.1% compared to synchronous baselines on image recognition tasks and matches synchronous baselines on translation tasks.

Warmup Epochs (W). In some cases, the statistical (hardware)-efficiency tradeoff PipeMare presents is too
Table 2. Comparison of statistical efficiency (test accuracy or BLEU score), (amortized) pipeline utilization, and weight+optimizer memory of PipeMare(W) and baselines. Here we use top-1 accuracy or BLEU score as the metrics for CIFAR10/ImageNet and IWSLT/WMT respectively. Target accuracies (BLEU scores) for each task are 94.0(CIFAR10), 75.5(ImageNet), 34.1(IWSLT) and 27.4(WMT).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Acc.</th>
<th>Pipe. Util.</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10</td>
<td>PipeDream</td>
<td>94.8</td>
<td>100%</td>
<td>2.70X</td>
</tr>
<tr>
<td></td>
<td>GPipe</td>
<td>95.0</td>
<td>7%</td>
<td>1X (270MB)</td>
</tr>
<tr>
<td></td>
<td>PipeMare</td>
<td>95.0</td>
<td>100%</td>
<td>1.33X</td>
</tr>
<tr>
<td>ImageNet</td>
<td>PipeDream</td>
<td>74.7</td>
<td>100%</td>
<td>1.61X</td>
</tr>
<tr>
<td></td>
<td>GPipe</td>
<td>76.0</td>
<td>13%</td>
<td>1X (293MB)</td>
</tr>
<tr>
<td></td>
<td>PipeMare</td>
<td>75.5</td>
<td>100%</td>
<td>1.33X</td>
</tr>
<tr>
<td></td>
<td>PipeMareW</td>
<td>75.9</td>
<td>33%</td>
<td>1.33X</td>
</tr>
<tr>
<td>IWSLT14</td>
<td>PipeDream</td>
<td>0.0</td>
<td>100%</td>
<td>2.06X</td>
</tr>
<tr>
<td></td>
<td>GPipe</td>
<td>34.5</td>
<td>17%</td>
<td>1X (0.65GB)</td>
</tr>
<tr>
<td></td>
<td>PipeMare</td>
<td>34.1</td>
<td>100%</td>
<td>1.25X</td>
</tr>
<tr>
<td></td>
<td>PipeMareW</td>
<td>34.5</td>
<td>42%</td>
<td>1.25X</td>
</tr>
<tr>
<td>WMT17</td>
<td>PipeDream</td>
<td>0.0</td>
<td>100%</td>
<td>2.39X</td>
</tr>
<tr>
<td></td>
<td>GPipe</td>
<td>27.5</td>
<td>56%</td>
<td>1X (1.01GB)</td>
</tr>
<tr>
<td></td>
<td>PipeMare</td>
<td>27.0</td>
<td>100%</td>
<td>1.25X</td>
</tr>
<tr>
<td></td>
<td>PipeMareW</td>
<td>27.8</td>
<td>96%</td>
<td>1.25X</td>
</tr>
</tbody>
</table>

coarse-grained. Here, we use the standard technique of running a number of warmup epochs of the baseline method before switching to PipeMare to trade off hardware efficiency for statistical efficiency. Concretely, we initialize with \(E_w \) epochs of synchronous (GPipe-style) pipeline-parallel training using the standard learning rate. We call this modified method \textbf{PipeMareW}. Since we introduce synchronous training in the beginning, the average pipeline utilization \(Util_{PipeMare} \) is amortized over the total time needed to reach a target accuracy (BLEU score), i.e., \(\frac{E_{PipeMare} + E_{Sync}}{E_{PipeMare} + E_{Sync} \times Util_{Sync}} \), where \(E \) denotes epochs.

4.1 Experimental Setting

We overview the details of our experimental setup and provide the exact details in Appendix C.

\textbf{Setup.} Since the purpose of this paper is to determine if asynchronous pipeline parallel is feasible statistically (and, if successful, enable emerging hardware accelerator designs to reap the hardware benefits), we built a custom optimizer in PyTorch that simulates (running on Nvidia V100 GPUs) the exact asynchronous updates (via a queue of stale weights) of PipeMare. Using this, we report the pipeline utilization, weight and optimizer memory, and accuracy (or BLEU score) on each benchmark. The pipeline utilization and memory we report are calculated using the formulas we present in Table 1. We report the averaged model accuracy from runs with three different random seeds.

\textbf{Implementation Details} All experiments are run using a simulator we built in PyTorch and on AWS p3.2xlarge instances (Nvidia V100 GPUs). To design our simulator we changed the optimizer module in PyTorch to simulate the exact delay one would see when computing updates while running with fine-grained pipeline parallelism. To do this our custom optimizer implementation maintains a queue of stale weight values\(^2\) that represents the delay one would get in each pipeline stage. With our simulation we model the statistical effects of this fine-grained pipeline parallelism, propose compute and memory friendly techniques to counteract these effects, and experiment with our techniques on real deep neural networks. This enables our goal of providing theoretical and experimental evidence to help validate the design, efficacy, and potential of new dataflow accelerators.

\textbf{Benchmarks.} We benchmark a ResNet50 model (He et al., 2016) for image classification and the 12-layer Transformer model (Vaswani et al., 2017) for neural machine translation (mlp, 2019). We use the standard CIFAR10 and ImageNet datasets for image classification, and popular IWSLT14 German-to-English and WMT17 English-
PipeMare: Asynchronous Pipeline Parallel DNN Training

to-German dataset for neural machine translation. We use standard, publicly available hyperparameters (see Appendix C.1) for each of these two popular models. For image classification, we use test set accuracy as the model accuracy metric while in translation tasks we use test BLEU score. We compare PipeMare to two synchronous (baseline) pipeline parallel training methods: GPipe and PipeDream. We report in detail on the two non-standard hyperparameters we had to select next (microbatch size and number of pipeline stages). For all other hyperparameters we use standard, publicly available hyperparameters (see Appendix C.1) for each of these two popular models.

Microbatch Size. For microbatch size (M) we always select a value that is as small as possible. This has two main benefits: (1) it saves activation memory and (2) it results in less gradient delay τ_{fwd} given a fixed number of pipeline stages (more microbatches per minibatch). We choose $M = 8(16)$ for ResNet50 on CIFAR10 (ImageNet) as smaller M, in both cases, cause problems in batch normalization (Yuxin Wu, 2018) operators. For Transformer on IWSLT14 we choose the number of tokens (245) in the longest sentence as the maximum tokens per microbatch. On WMT17, we used a maximum tokens per microbatch of 1792 for both PipeDream and PipeMare, as this enabled results to be simulated within a reasonable timeframe. To be fair, in GPipe pipeline utilization calculation, we maximized their efficiency by using a maximum tokens of 251 (the longest sentence in WMT17).

Pipeline Stages. To partition the model, we traverse model weights according to their topological order in the graph, always treating weight and bias in the same operator as a fused weight. Next, we split these model weights evenly over P pipeline stages to represent the fine grained pipeline parallelism which is hard to train. Specifically, we use 107 stages for ResNet50 and 93 stages for Transformer in Section 4.2.

4.2 End-to-End Comparison

We compare the asynchronous PipeMare training method to the synchronous GPipe and PipeDream methods on both image classification and machine translation tasks. In Table 2 we show that on both of these tasks PipeMare obtains higher pipeline utilization, uses less weight and optimizer memory, and achieves comparable final model qualities when compared to the synchronous baselines.

Image classification tasks On the CIFAR10 dataset, PipeMare can achieve $14.3 \times$ higher pipeline utilization than GPipe while maintaining same test accuracy. Note that on CIFAR10, PipeMare attains 100% pipeline utilization as it does not need any warmup epochs. Though PipeDream attains the same utilization as PipeMare, it requires $2.7 \times$ more weight and optimizer memory. PipeMareW has 0.1% accuracy gap with GPipe on ImageNet but achieves $2.5 \times$ higher pipeline utilization (using 30 warmup epochs).

Neural machine translation tasks Because we use PipeMareW on both the IWSLT14 (10 warmup epochs) and WMT17 (4 warmup epochs) experiments the amortized pipeline utilization of PipeMare is less than 100%, though it still achieves $2.5 \times$ and $1.7 \times$ higher pipeline utilization than GPipe. We observe that PipeDream fails to train Transformer even though it uses $\geq 2 \times$ more weight and optimizer memory than PipeMare. Therefore, PipeMare improves the pipeline utilization and memory usage when compared to previous pipeline parallelism techniques, with no loss in statistical performance.

4.3 Ablation study

To understand the contribution of each technique to the performance of PipeMare, we perform ablation studies on PipeMare with respect to memory, pipeline utilization, and model quality. We show that each technique is necessary for PipeMare to outperform synchronous techniques and is
Table 3. Ablation study of PipeMare. We show the impact of the learning rate rescheduling (T1), discrepancy correction (T2), and warmup epochs (W) on metrics of interest. Note that warmup epochs were not necessary on the CIFAR10 dataset to recover the performance of GPipe.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Acc.</th>
<th>Pipe. Util.</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10</td>
<td>T1 Only</td>
<td>95.0</td>
<td>100%</td>
<td>1X (270MB)</td>
</tr>
<tr>
<td></td>
<td>T2 Only</td>
<td>94.5</td>
<td>100%</td>
<td>1.33X</td>
</tr>
<tr>
<td></td>
<td>T1+T2</td>
<td>95.0</td>
<td>100%</td>
<td>1.33X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>BLEU</th>
<th>Pipe. Util.</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWSLT14</td>
<td>T1 Only</td>
<td>34.1</td>
<td>100%</td>
<td>1X (0.65GB)</td>
</tr>
<tr>
<td></td>
<td>T2 Only</td>
<td>0.0</td>
<td>100%</td>
<td>1.25X</td>
</tr>
<tr>
<td></td>
<td>T1 + T2 Only</td>
<td>34.1</td>
<td>100%</td>
<td>1.25X</td>
</tr>
<tr>
<td></td>
<td>T1 + T2 + W</td>
<td>34.5</td>
<td>42%</td>
<td>1.25X</td>
</tr>
</tbody>
</table>

summarized in Figures 7 and 8 and table 3.

Learning rate rescheduling (T1). Asynchronous pipeline parallel training with only T1 fully utilizes the compute power by avoiding bubbles and additional weight stashing. Therefore it achieves optimal hardware efficiency. T1 alone can achieve a test accuracy (BLEU score) of 95.0% (34.1), competitive to the baseline of synchronous methods (95.0% accuracy and 34.5 BLEU score), and improve pipeline utilization by up to 14.3× over GPipe. For ResNet50 on CIFAR10, the test accuracy of asynchronous training with T1 matches that of synchronous training while asynchronous training without it diverges; for the Transformer model, T1 takes about twice as many epochs of synchronous training to reach BLEU score 34.1 while asynchronous training without T1 achieves a test BLEU score ≤ 1. This indicates that T1 does a lot of the heavy lifting in boosting hardware efficiency while maintaining statistical efficiency as shown in Table 3 and Figure 7. However, as shown in Figure 8, T1 alone cannot prevent diverge (in ResNet50) or can only achieve a much worse BLEU score (in Transformer). Therefore the efficacy of T1 weakens as the number of pipeline stages increases which can be solved when T2 (discussed next) is combined with T1.

Discrepancy Correction (T2). T2 mitigates the discrepancy from delay and helps accelerate convergence. Our experiment results indicate that in addition to T1, T2 is also an important technique to achieve state of the art results on certain models. As shown in Table 3, T2 alone achieves an accuracy of 94.5% on ResNet50 while a jarring 0.0 BLEU score on Transformer model. The poor performance of Transformer is fixed by combining T2 with T1, though the final test BLEU score (34.1) is the same as in T1 only setting. T2 with T1 shines on the convergence speed of both models, especially Transformer model on IWSLT14, as is seen in Figure 7 and Figure 8. This of course comes at the cost of using more weight memory, but it is minimal (33% more for SGD with momentum and 25% more for ADAM) given the improvements in training speed and accuracy. To further validate the efficacy of T2, in Appendix C.2.2, we show that on a ResNet152 model with 150 stages T2 is necessary to prevent divergence and match the accuracy attained by synchronous training. T2 alone either fails to converge or archives a suboptimal accuracy. However when combined with T1, as shown in Figure 8 again, can enable or accelerate convergence.

Warmup Epochs (PipeMareW). T1 and T2 still leave a noticeable BLEU score gap (0.4) for Transformer on IWSLT14 (Table 3). To close this gap PipeMareW adds 10 synchronous warmup epochs. The best BLEU score is boosted from 34.1 to 34.5. This comes at the cost of decreasing the overall pipeline utilization of PipeMare from 100% to 42%, which is still significantly higher than GPipe.

5 Conclusion

In this paper, we presented PipeMare, a system for asynchronous pipeline-parallel training of DNN models. PipeMare uses a bubble-free pipeline parallel hardware model along with two theoretically motivated techniques (learning rate rescheduling and discrepancy correction) which help improve statistical efficiency. Experimentally, we showed PipeMare has better hardware efficiency (pipeline utilization and memory) than competing algorithms. We hope that this will make PipeMare a promising candidate algorithm for the new generation of hardware chips designed for training DNNs.
ACKNOWLEDGEMENTS

We are grateful to Sumti Jairath and Zhuo Chen for their insightful discussions. We thank David Luts and the anonymous reviewers for their valuable feedbacks.

REFERENCES

Ward-Foxton, S. Groq tensor streaming processor architecture is radically different. URL (https://groq.com/groq-tensor-streaming-processor-architecture-is-radically-different/).

A Supplementary Material for Section 2

To better explain the hardware efficiency of the pipeline parallel training methods introduced in Section 2, we first derive the memory footprint and utilization of the introduced methods in more detail in Appendix A.1. In Appendix A.2, we first discuss the activation memory which is the major component of memory consumption in pipeline parallel training. We then propose a new gradient checkpointing method to trade moderate compute for significantly lower activation memory footprint in Appendix A.3, which is applicable to both the synchronous and asynchronous methods introduced in Appendix A.1. Finally, we discuss the throughput of the synchronous (GPipe) and asynchronous (PipeDream and PipeMare) methods under the same budget for activation memory and compute (measured in FLOPs), which is used to estimate the time-to-accuracy across the paper. Throughout the remainder of the appendix we use normalized throughput instead of pipeline utilization as the two are linearly proportional to each other.

To discuss with consistent notations across methods, we define N and M respectively as the activation size per microbatch per neural net operator and the number of microbatches in each minibatch. We assume that we use models with L operators, which are trained using a pipeline with P stages. For clarity and simplicity in exposing the memory footprint and throughput, we assume that the model operators are partitioned equally across stages and the activation memory usage of each operator is the same.

A.1 Pipeline Parallel Training Methods

Using the setup from Section 2, we analyze the delays, pipeline utilization, and memory usage of the two synchronous baseline PP training methods (PipeDream and GPipe), and we introduce the setup for our asynchronous method (PipeMare). These results are summarized in Figure 1(d).

PipeDream. PipeDream has forward delay $\tau_{fwd,i} = \lceil \frac{2(P-i)}{N} \rceil$ and uses weight stashing to cache the weights used in the forward pass until they are needed in the backward pass, which allows for full pipeline efficiency while maintaining synchronous execution $\tau_{fwd} = \tau_{bkwd}$. Note that because $\tau_{fwd} = \tau_{bkwd}$ PipeDream uses same weights for both forward and backward passes, despite having a delayed update. Unfortunately, this comes at the cost of storing copies of the weights, which uses extra memory of size $\text{Mem} = \sum_{i=0}^{P} |(w)_i| \times \tau_{fwd,i} = \sum_{i=0}^{P} |(w)_i| \times \lceil \frac{2(P-i)}{N} \rceil$. With fine-grained PP P can become large, making the overhead Mem large, which presents a problem for large models. Because PipeDream’s pipeline is fully utilized during training they have a pipeline utilization of $\text{Util} = 1.0$.

GPipe. For GPipe, $\tau_{fwd} = \tau_{bkwd} = 0$, at the cost of lower pipeline utilization and additional activation memory. Each pipeline has to be filled and drained at a minibatch boundary to ensure weight synchronization between forward and backward pass, so the average bubble time is $O(\frac{P-1}{N})$ (Huang et al., 2018). Consequently, the pipeline utilization of GPipe is $\frac{P}{N+P}$. GPipe leverages microbatching (increasing $N > 1$) to reduce the number of bubbles in its pipeline. GPipe does not store any additional weight memory but does store additional memory for activations. Using the standard technique of gradient checkpointing (Chen et al., 2016b), both PipeMare and GPipe can reduce their activation memory footprint (see Appendix A.3 and appendix D).

PipeMare. In PipeMare we let the computation proceed asynchronously: we just compute gradients with whatever weights are in memory at the time we need to use them. This avoids any need to store extra copies of our model weights ($\text{Mem} = W$) or introduce bubbles into our pipeline ($\text{Util} = 1.0$), because as soon as a pipeline stage has its gradients (accumulated within a full minibatch) the weights are updated. This means that the forward propagation is done on different weights than those that are used for backpropagation, i.e., $\tau_{fwd} \neq \tau_{bkwd}$. Concretely, each operator in our neural network has a fixed forward delay of $\tau_{fwd} = \lceil \frac{2(P-i)}{N} \rceil$ which is the same τ_{fwd} as PipeDream. On the other hand, since there is no delay between backward pass and weight updates, $\tau_{bkwd} = 0$. Similar to GPipe, minimizing the microbatch size M reduces the activation memory usage while also keeping each pipeline stage fully utilized. Unlike in GPipe, minimizing the microbatch size in PipeMare has the additional benefit of helping to reduce the discrepancy between the forward and backward delays.

A.2 Activation Memory

PipeMare and PipeDream PipeMare and PipeDream has the same amount of activation memory requirement. This is because in both scenarios, pipeline does not have bubbles or stalls; the activations are cached and utilized with the same pipeline behavior pattern. In particular, the activation memory cached by stage i is proportional to the number of stages between forward and backward, i.e., $O(2(P-i) + 1)$. Therefore, the total activation memory is

$$A_{PM} = O(MPL).$$

GPipe Here we discuss on the activation memory consumption of GPipe (Huang et al., 2018). When the activations of every operator in neural nets are cached for backpropagation, by multiplying the activation memory per minibatch per operator $B = MN$ with the number of operators L, we have the activation memory for GPipe as

$$A_{GP} = O(MNL).$$
PipeMare: Asynchronous Pipeline Parallel DNN Training

A.3 Trade compute for memory via PipeMare Recompute

In the fine-grain pipeline training setting, we have $P \approx L$. For simplicity in discussion, we assume $P = L$. In this setting, eq. (6) becomes,

$$A_{PM} = O(MP^2).$$

In other words, while throughput increases linearly with number of stages P, activation memory can scale quadratically. In order to reduce the memory pressure, here we propose a new way of utilizing recompute, to trade a small amount of compute resources for huge activation memory savings. Instead of recomputing the activations inside each stage (Huang et al., 2018), we propose to recompute the activations across a segment of multiple stages, which we call PipeMare Recompute, to allow effective activation memory reduction in the fine-grain pipeline setting.

PipeMare Recompute utilizes a simple strategy. It recomputes the activation in advance so that the recomputed activation of the last stage in a segment arrives right at the time when the corresponding backpropagation needs to process this activation. Unlike the single-stage recompute proposed in GPipe (Huang et al., 2018), PipeMare Recompute does not stall the backpropagation operations as it can be overlapped with the forward and backward operations in the same pipeline stage. To enable this overlap, we need to consume approximately 25% of the total compute resources. Specifically, the pipeline needs to simultaneously compute for the forward, backward, and recompute operations, with the backward operations consuming $2 \times$ more compute than forward and recompute operations respectively.

For the simplicity of demonstrating the activation memory saving attained by PipeMare Recompute, we assume $P = L$ in the fine-grain pipeline setting and group the stages into segments each with S stages. Let us assume the i-th stage is the beginning stage of a specific segment, then the memory consumption for this segment is $O(2(P - i) + S^2)$. As visualized in Figure 9 for an example with 16 stages and 4 segments, the first term $2(P - i)$ describes the activations that are used by backward pass (e.g., recompute of j-th stage in a segment needs to start $2(S - j)$ steps earlier before the corresponding gradient arrives at this stage). Consequently, given the memory consumption in each segment is $O(2(P - i) + S^2)$, the total memory with P / S segments is determined by
in simulation, substantially large fixed delay can cause the system to diverge. Figure 4 also illustrates that this divergence is exacerbated by forward-backward delay discrepancy: the orange series shows that even when the learning rate and delay $\tau_{\text{fwd},i}$ are kept the same, adding delay discrepancy can cause the algorithm to diverge.

B.1 Proof of Lemma 1

We start by trying to find the α for which p has a complex root on the unit circle. Note that since $(1 - iy)/(1 + iy)$ always lies on the unit circle for any $y \in \mathbb{R}$, it suffices to find α for which

$$0 = p \left(\frac{1 - iy}{1 + iy} \right) = \left(\frac{1 - iy}{1 + iy} - 1 \right) \left(\frac{1 - iy}{1 + iy} \right)^r + \alpha \lambda,$$

for some $y > 0$. After a little simplification, this becomes

$$2iy \cdot (1 - iy)^r = \alpha \lambda \cdot (1 + iy)^{r+1}. \quad (11)$$

Next, we take the argument. Since $y, \alpha,$ and λ are real and positive, for some $n \in \mathbb{Z}$,

$$\frac{\pi}{2} + 2\pi n + \tau \text{ Arg} (1 - iy) = (\tau + 1) \text{ Arg} (1 + iy),$$

which implies that, since $\text{ Arg} (1 - iy) = -\text{ Arg} (1 + iy)$,

$$\text{ Arg} (1 + iy) = \frac{\pi + 4\pi n}{4\tau + 2}.$$

This uniquely determines the value of y, because $y = \frac{\pi}{2} + 2\pi n + \tau \text{ Arg} (1 + iy)$. To get the corresponding value of α, notice that if we take the magnitude of (11), it simplifies to

$$\alpha \lambda = \frac{|2iy|}{|1 + iy|} = \frac{2y}{\sqrt{1 + y^2}} = 2 \sin \text{ Arg} (1 + iy),$$

so there can be a point on the unit circle when

$$\alpha = \frac{2}{\lambda} \cdot \sin \left(\frac{\pi + 4\pi n}{4\tau + 2} \right)$$

for any $n \in \mathbb{Z}$. The lemma statement now follows directly from a root-counting argument.

The main components of the root-counting argument are as follows. First, notice that for small α, all the roots of p will be within the interior of the unit disk, since as α approaches 0 from above, all but one of the roots will approach 0 and the remaining root will approach 1 from the left. To see this, notice that when $\alpha = 0$,

$$p(\omega) = (\omega - 1) \cdot \omega^\tau.$$

On the other hand, as $\alpha \to \infty$, all the roots will diverge in magnitude to infinity, which means they must eventually
Thus, we can conclude that all for these crossings of the unit circle can occur. They happen

Now, from the proof of Lemma 1, we know exactly where in other words, this will happen for

π

by

sin

since this is where the

ω

and

∞

which implies from taking the magnitude that

|ω|τ+1 + |ω|τ ≥ αλ.

Thus, we can conclude that all τ + 1 roots of the polynomial p must pass through the unit circle as α moves from 0+ to ∞.

Now, from the proof of Lemma 1, we know exactly where these crossings of the unit circle can occur. They happen for

α = \frac{2}{λ} \cdot \sin \left(\frac{π + 4πn}{4τ + 2} \right),

and at a point ω on the unit circle with

Arg(ω) = ± \frac{π + 4πn}{4τ + 2}.

Not all values of n correspond to a positive value of α, and many values of n will result in the same value of α. Clearly we can restrict our attention to 0 ≤ n < 2τ + 1, since adding 2τ + 1 to n results in the same values for α and ω. The step size α will only be positive when, for some m ∈ Z,

\frac{π + 4πn}{4τ + 2} + 2πm ∈ (0, π),

since this is where the sin is positive. Dividing both sides by π and multiplying by 2τ + 1, this happens when

\frac{1}{2} + 2n + 2m(2τ + 1) ∈ (0, 2τ + 1).

In other words, this will happen for n ∈ \{0, 1, \ldots, τ\}. However, half of these produce redundant values of α, since

\sin \left(\frac{π + 4π(τ - n)}{4τ + 2} \right) = \sin \left(\frac{π(4τ + 2) - π - 4πn}{4τ + 2} \right)

= \sin \left(\frac{π - π + 4πn}{4τ + 2} \right)

= \sin \left(\frac{π + 4πn}{4τ + 2} \right).

So we can restrict our attention to 0 ≤ n ≤ \frac{τ}{2}. If τ is odd, then each of these assignments of n corresponds to two roots on the unit circle. If τ is even, then each of these assignments corresponds to two roots, except for the assignment n = \frac{τ}{2}, for which

Arg(ω) = ± \frac{π + 2πτ}{4τ + 2} = \frac{π}{2}

corresponds to only one root on the unit circle. Thus there are only ever τ + 1 assignments of (α, ω) for which ω is a root on the unit circle of

0 = (ω - 1) · ωτ + αλ.

Furthermore, none of those roots can be multiple roots, because if they were multiple roots they would need to be zeros of the polynomial p′(ω), and none of the roots of that polynomial lie on the unit disk. As a result, every root crossing of the unit disk must involve only a single root. Since there are τ + 1 roots and τ + 1 opportunities for a crossing, and all τ + 1 roots must cross at some point, each crossing of the unit circle must correspond to a root moving out of the unit disk. As a consequence, no root can ever move back in to the unit disk, since there is no room for it to do so. Thus, after the first roots leave the unit disk at

α = \frac{2}{λ} \cdot \sin \left(\frac{π}{4τ + 2} \right),

there is never a time at which all the roots are inside the unit disk.
Finally, recall that \(p \) can have a double root only where its first derivative \(p' \) has a root. This will occur only where
\[
p'(w) = (\tau + 1)\omega^\tau - \tau\omega^{\tau-1} = 0,
\]
which happens at
\[
\omega = \frac{\tau}{\tau + 1}.
\]
This corresponds to a value of \(\alpha \) of
\[
\alpha = \frac{1}{\lambda} \left(1 - \omega\right)\omega^\tau = \frac{1}{\lambda(\tau + 1)} \left(\frac{\tau}{\tau + 1}\right)^\tau.
\]
This proves the lemma.

B.2 An extension to SGD with momentum.

Deep neural networks are often trained with momentum (Sutskever et al., 2013). A natural question is whether the \(O(\tau^{-1}) \) stability threshold also holds if momentum is used. When we add momentum, our update step becomes
\[
v_{t+1} = \beta v_t - \alpha \nabla f_t(u_{\text{fwd},t}, u_{\text{bkwd},t}), \quad w_{t+1} = w_t + v_{t+1}.
\]

We make the same simplifying assumptions as we made above for the non-momentum case, assuming a constant \(\tau \) and quadratic loss. This results in an update step that, just as above, can be expressed in terms of a companion matrix which will have characteristic polynomial
\[
p(\omega) = \omega^{\tau+1} - (1 + \beta)\omega^\tau + \beta\omega^{\tau-1} + \alpha\lambda. \tag{12}
\]

As in the non-momentum case, we can analyze this for stability by finding the parameters for which the roots of \(p \) lie inside the unit disk.

Lemma 3. For any momentum parameter \(0 < \beta \leq 1 \), there exists a step size \(\alpha \) with
\[
0 < \alpha \leq \frac{4}{\lambda} \cdot \sin \left(\frac{\pi}{4\tau + 2}\right)
\]
such that at least one of the roots of the polynomial \(p \) of (13) lies outside the interior of the unit disk.

This lemma shows that adding momentum does not let us escape from the \(O(\tau^{-1}) \) step size requirement observed for SGD. It suggests that the \(O(\tau^{-1}) \) threshold is general and not just specific to plain SGD, and it motivates our use of Technique 1 with all learning algorithms, not just SGD.

We make the same simplifying assumptions as we made above for the non-momentum case, assuming a constant \(\tau \) and quadratic loss. This results in an update step of
\[
w_{t+1} - w_t = \beta (w_t - w_{t-1}) - \alpha\lambda w_{t-\tau} + \alpha \eta_i.
\]

Just as in the non-momentum case, we can write this in terms of a companion matrix, which will have characteristic polynomial
\[
p(\omega) = \omega^{\tau+1} - (1 + \beta)\omega^\tau + \beta\omega^{\tau-1} + \alpha\lambda. \tag{13}
\]

As in the non-momentum case, we will analyze this for stability by finding the parameters for which the roots of \(p \) lie inside the unit disk.

To prove the lemma, we start with the expression for the polynomial
\[
p(\omega) = \omega^{\tau+1} - (1 + \beta)\omega^\tau + \beta\omega^{\tau-1} + \alpha\lambda = (\omega - \beta) \cdot (\omega - 1) \cdot \omega^{\tau-1} + \alpha\lambda.
\]

As for the non-momentum case, we consider the substitution
\[
\omega = \frac{1 - iy}{1 + iy},
\]
which always lies on the unit circle for any \(y \in \mathbb{R} \). (Without loss of generality, we consider \(y > 0 \), which corresponds to roots in the lower half-plane. This is without loss of generality because, since \(p \) is a real polynomial, its complex roots always appear in pairs.) We want to find \(\alpha \) and \(\beta \) for which
\[
0 = p \left(\frac{1 - iy}{1 + iy} \right) = \left(\frac{1 - iy}{1 + iy} - \beta \right) \left(\left(\frac{1 - iy}{1 + iy} \right) - 1 \right) \left(\frac{1 - iy}{1 + iy} \right)^{\tau-1} + \alpha\lambda.
\]

This can be simplified to
\[
0 = \left(1 - \beta \cdot \frac{1 + iy}{1 - iy} \right) \left(-2iy \right) \left(\frac{1 - iy}{1 + iy} \right)^\tau + \alpha\lambda,
\]
and so
\[
\left(1 - \beta \cdot \frac{1 + iy}{1 - iy} \right) \cdot 2iy \cdot (1 - iy)^\tau = \alpha\lambda(1 + iy)^{\tau+1}.
\]

Define \(\theta \) as
\[
\theta = \text{Arg} \left(1 - \beta \cdot \frac{1 + iy}{1 - iy} \right) + \frac{\pi}{2}.
\]

Notice that since the thing inside the \(\text{Arg} \) is 1 minus something with magnitude less than 1 times something that is on the unit circle in the upper half plane, it will necessarily end up in the fourth quadrant, and so
\[
\theta - \frac{\pi}{2} \in \left(-\frac{\pi}{2}, 0 \right) \Rightarrow \theta \in \left(0, \frac{\pi}{2} \right).
\]

Now taking the argument of the whole expression gives us, for any \(n \in \mathbb{Z} \),
\[
\theta + 2\pi n + \tau \text{Arg}(1 - iy) = (\tau + 1) \text{Arg}(1 + iy),
\]
which simplifies to
\[\text{Arg}(1 + iy) = \frac{\theta + 2\pi n}{2\tau + 1}. \]

In this case,
\[y = \tan \left(\frac{\theta + 2\pi n}{2\tau + 1} \right). \]

Next, we derive an expression for \(\beta \). Since
\[\theta = \text{Arg}\left(1 - \beta \cdot \frac{1 + iy}{1 - iy}\right) + \frac{\pi}{2}, \]
\[= \text{Arg}\left(\frac{(1 - \beta) - iy(1 + \beta)}{1 - iy}\right) + \frac{\pi}{2}, \]
\[= \text{Arg}\left((1 - \beta) - iy(1 + \beta)\right) + \text{Arg}(1 + iy) + \frac{\pi}{2}, \]
so
\[\theta - \frac{\theta + 2\pi n}{2\tau + 1} = \text{Arg}(1 + iy), \]
and
\[\frac{1 - \beta}{1 + \beta} = \tan \left(\frac{\theta + 2\pi n}{2\tau + 1} \right) \tan \left(\theta - \frac{\theta + 2\pi n}{2\tau + 1} \right) \]
\[= \frac{\cos \left(\theta - \frac{2\theta + 4\pi n}{2\tau + 1} \right) - \cos(\theta)}{\cos \left(\theta - \frac{2\theta + 4\pi n}{2\tau + 1} \right) + \cos(\theta)}. \]

Now taking the absolute value to find \(\alpha \) gives us
\[\alpha \lambda = \left| 1 - \beta \cdot \frac{1 + iy}{1 - iy} \right| \cdot \frac{2y}{|1 + iy|} \]
\[= 2 \cdot \left| 1 - \beta \cdot \frac{1 + iy}{1 - iy} \right| \cdot \sin \left(\frac{\theta + 2\pi n}{2\tau + 1} \right). \]

Next, consider the case where \(n = 0 \). In this case,
\[\frac{1 - \beta}{1 + \beta} = \frac{\cos \left(\theta - \frac{2\theta}{2\tau + 1} \right) - \cos(\theta)}{\cos \left(\theta - \frac{2\theta}{2\tau + 1} \right) + \cos(\theta)}. \]

It is clear that there is a one-to-one relationship between accessible \(\theta \) and \(\beta \) here, because we can represent \(\beta = 0 \) with \(\theta = \pi/2 \), and \(\beta = 1 \) with \(\theta = 0 \). So, for every \(\beta \) (and given a fixed \(\tau \)), we can find a \(\theta \) that satisfies this equation. Using that \(\theta \), we can then assign
\[y = \tan \left(\frac{\theta}{2\tau + 1} \right). \]

Since \(\theta \) is bounded, \(y \) is guaranteed to be in range. So, the equation
\[0 = p \left(\frac{1 - iy}{1 + iy} \right) \]
will be guaranteed to hold for some \(\alpha \). This \(\alpha \) will be given by
\[\alpha \lambda = 2 \cdot \left| 1 - \beta \cdot \frac{1 + iy}{1 - iy} \right| \cdot \sin \left(\frac{\theta}{2\tau + 1} \right). \]

So, since \(\beta < 1 \), it follows that this \(\alpha \) will satisfy
\[\alpha \leq \frac{4}{\lambda} \cdot \sin \left(\frac{\pi}{2\tau + 1} \right) \leq \frac{4}{\lambda} \cdot \sin \left(\frac{\pi}{4\tau + 2} \right), \]
which is what we wanted to show. This proves that for any \(\beta \), there exists a \(\alpha \) at least this large for which the algorithm is unstable.

B.3 Proof of Lemma 2

We know, from our baseline analysis, that when
\[\alpha = \frac{2}{\lambda} \cdot \sin \left(\frac{\pi}{4\tau + 2} \right) \]
and \(\Delta = 0 \), the polynomial \(p \) has a root at
\[\omega = \exp \left(\frac{i\pi}{2\tau_{\text{fwd}} + 1} \right). \]

Consider values of \(\alpha \) and \(\Delta \) for which \(p \) would have a root at
\[\omega = \exp(i\theta) \]
for
\[\theta \in \left(0, \frac{\pi}{2\tau_{\text{fwd}} + 1} \right). \]

In this case, we’d have
\[0 = \exp(i\tau_{\text{fwd}} \theta) \cdot (\omega - 1) - \alpha \cdot \Delta \cdot \exp(i(\tau_{\text{fwd}} - \tau_{\text{bkwd}})\theta) + \alpha \cdot (\lambda + \Delta), \]
which is equivalent to
\[0 = \exp \left(\frac{i\tau_{\text{fwd}} + \tau_{\text{bkwd}}}{2} \right) \cdot (\omega - 1) - \alpha \cdot \Delta \cdot \exp \left(\frac{i\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \right) + \alpha \cdot (\lambda + \Delta) \cdot \exp \left(-\frac{i\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \right). \]
If we take the real part of this, we get

\[
0 = \cos \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 2}{2} \cdot \theta \right) - \cos \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}}}{2} \cdot \theta \right) + \alpha \lambda \cos \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \theta \right)
\]

\[
= -2 \sin \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \sin \left(\frac{\theta}{2} \right) + \alpha \lambda \cos \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \theta \right),
\]

so solving for \(\alpha \) gives us

\[
\alpha = \frac{2 \sin \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \sin \left(\frac{\theta}{2} \right)}{\lambda \cos \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right)}.
\]

On the other hand, if we take the imaginary part instead of the real part, we get

\[
0 = \sin \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 2}{2} \cdot \theta \right) - \sin \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}}}{2} \cdot \theta \right) - (\lambda + 2\Delta) \sin \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right)
\]

\[
= 2 \cos \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \sin \left(\frac{\theta}{2} \right) - (\lambda + 2\Delta) \sin \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right)
\]

\[
= 2 \cos \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \sin \left(\frac{\theta}{2} \right) - (\lambda + 2\Delta) \sin \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right)
\]

\[
= - \frac{2 \sin \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \sin \left(\frac{\theta}{2} \right)}{\lambda \cos \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right)} \cdot \tan \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \tan \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right)
\]

and so

\[
\frac{2\Delta}{\lambda} = \cot \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right) - \cot \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) - 1 = \csc \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) - \csc \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) - 1.
\]

One thing we notice immediately from this expression is that it approaches infinity as \(\theta \to 0^+ \), goes to zero at

\[
\theta = \frac{\pi}{2\tau_{\text{fwd}} + 1},
\]

and is continuous and positive in between. This means that all non-negative values of \(\Delta \) are actually attained for some \(\theta \), and there is a one-to-one mapping between \(\Delta \) and \(\theta \) in this interval. Furthermore, since \(\alpha \) approaches 0 monotonically as \(\theta \) approaches 0 over this interval, this means that there is no absolute lower bound on how small \(\alpha \) can get. So all we need is a bound on \(\alpha \) in terms of \(\Delta \).

In the limit of small \(\theta \),

\[
\frac{2\Delta}{\lambda} = \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right)^{-1} \cdot \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right)^{-1}
\]

and

\[
\alpha = 2 \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \left(\frac{\theta}{2} \right) \cdot \frac{\lambda}{2\Delta}
\]

\[
= \frac{2 \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \cdot \left(\frac{\theta}{2} \right) \cdot \frac{\lambda}{2\Delta}}{\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta} \cdot \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right)^{-1}
\]

\[
= \Delta \cdot \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right).
\]
Can we get a real bound that matches this?
\[
\frac{\lambda}{\Delta} = 2 \sin \left(\frac{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}{2} \cdot \theta \right) \\
\cdot \sin \left(\frac{\tau_{\text{fwd}} + \tau_{\text{bkwd}} + 1}{2} \cdot \theta \right) \\
\cdot \sec \left(\frac{2\tau_{\text{fwd}} + 1}{2} \cdot \theta \right)
\]

Similar to the previous section, we have
\[
\frac{\lambda}{\Delta} = \cos \left(\frac{2\tau_{\text{fwd}} + 1}{2} \cdot \theta \right) - \cos \left(\frac{2\tau_{\text{bkwd}} + 1}{2} \cdot \theta \right)
\]

It can be shown that for any \(\Delta \leq 1 \), the third derivative of \(\cos(ax) \cdot \sec(x) \) is non-negative over \(x \in [0, 1/2] \). So,
\[
\frac{\lambda}{\Delta} \geq \frac{1}{2} \cdot \left(\left(\frac{2\tau_{\text{fwd}} + 1}{2} \right)^2 - \left(\frac{2\tau_{\text{bkwd}} + 1}{2} \right)^2 \right) \cdot \theta^2.
\]

Similarly, we have
\[
\alpha = \frac{2}{\lambda} \cdot \sin \left(\frac{\theta}{2} \right) \\
\cdot \left(\lambda + \Delta \right) \cdot \sin \left(\frac{2\tau_{\text{fwd}} + 1}{2} \cdot \theta \right) \\
\leq \frac{1}{\lambda} \cdot \left(\lambda + \Delta \right) \cdot \left(\frac{2\tau_{\text{fwd}} + 1}{2} \right) + \Delta \cdot \left(\frac{2\tau_{\text{bkwd}} + 1}{2} \right) \cdot \theta^2
\]

And this is an actual guarantee. So, we’ve proven that for any \(\Delta \geq 0 \), there exists an \(\alpha \) with
\[
0 < \alpha \leq \frac{2}{\Delta \cdot (\tau_{\text{fwd}} - \tau_{\text{bkwd}})}
\]
such that the polynomial \(p \) has a root on the unit circle.

This part of the proof introduces the delay-discrepancy-sensitivity parameter \(\Delta \). The other part of the min in the lemma statement follows directly from our original bound and the monotonicity of \(\Delta \) and \(\alpha \) in terms of \(\theta \) over the interval we have been looking at.

B.4 Justification for Claims in Section 3.2

In Section 3.2, we motivated our choice of \(\Delta \) by claiming that the second-order Taylor expansion of the characteristic polynomial of the companion matrix associated with momentum-corrected asynchronous pipeline-parallel SGD on the quadratic model around \(\omega = 1 \) is invariant to the delay-discrepancy-sensitivity parameter \(\Delta \) if \(\gamma \) is set appropriately. Here, we justify that assertion, as well as the other assertions we made in that subsection. First, we want to show formally that \(\omega = 1 \) is the “interesting” region. We do this with the following lemma.

Lemma 4. For any polynomial functions \(f, g, \) and \(h, \) and any integer \(\tau, \) define the polynomial
\[
p_{\tau}(\omega) = (\omega - 1) \cdot f(\omega) \cdot \omega^\tau - \alpha \cdot g(\omega) \cdot \omega^\tau - \alpha \cdot h(\omega),
\]
and suppose that \(f \) does not vanish anywhere on the unit circle. For any \(\tau, \) let \(\alpha_{\text{thresh}}(\tau) \) be the smallest \(\alpha > 0 \) for which \(p_{\tau} \) has a root on the unit circle, and let \(\omega_{\text{thresh}}(\tau) \) be one of the corresponding roots. Then, if
\[
\lim_{\tau \to \infty} \alpha_{\text{thresh}}(\tau) = 0,
\]
then
\[
\lim_{\tau \to \infty} \omega_{\text{thresh}}(\tau) = 1.
\]

Proof. Suppose that \(p_{\tau}(\omega) = 0 \) for some \(\omega \) on the unit circle. Solving for \(\alpha \) gives
\[
\alpha = (\omega - 1) \cdot \frac{f(\omega) \cdot \omega^\tau}{g(\omega) \cdot \omega^\tau - h(\omega)}
\]
\[
= |\omega - 1| \cdot \frac{|f(\omega)|}{|g(\omega)| \cdot |\omega^\tau - h(\omega)|}
\]
\[
\geq |\omega - 1| \cdot \frac{|f(\omega)|}{|g(\omega)| + |h(\omega)|}
\]
\[
\geq |\omega - 1| \cdot \frac{f_{\text{min}}}{g_{\text{max}} + h_{\text{max}}},
\]
where these min and max are taken over the unit circle. So, for some constant \(C > 0 \) independent of \(\tau, \)
\[
|\omega - 1| \leq C \cdot \alpha.
\]
(we know such a C exists because f does not vanish on the unit circle). The lemma statement follows directly.

This lemma shows in a very general sense that the points at which the roots of the characteristic polynomial first cross the unit circle as α increases from 0 will approach $\omega = 1$ as τ approaches ∞. Since we know from observation that for the systems we are studying, the smallest α at which the polynomial becomes unstable becomes smaller as τ approaches ∞, it follows that as $\tau \to \infty$, the points ω at which the system first becomes unstable must also approach $\omega = 1$. This formally justifies our notion of the area where the “action happens” for large τ.

Now, we will prove that the characteristic polynomial of the companion matrix associated with momentum-corrected asynchronous pipeline-parallel SGD on the quadratic model around $\omega = 1$ is invariant to the delay-discrepancy-sensitivity parameter Δ if γ is set such that

$$\gamma = 1 - \frac{2}{\tau_{\text{fwd}} - \tau_{\text{bkwd}} + 1}.$$

Here, we justify that assertion. First, observe that the characteristic polynomial of the companion matrix is

$$p(\omega) = (\omega - 1)(\omega - \gamma)\omega^{\tau_{\text{fwd}}} + \alpha(\lambda + \Delta)(\omega - \gamma) - \alpha \Delta \omega^{\tau_{\text{fwd}} - \tau_{\text{bkwd}}} (\omega - \gamma) + \alpha \Delta \omega^{\tau_{\text{fwd}} - \tau_{\text{bkwd}}} (\tau_{\text{fwd}} - \tau_{\text{bkwd}})(1 - \gamma)(\omega - 1).$$

This can be seen by constructing the companion matrix from the update rule directly.

Notice that this polynomial satisfies all the conditions of the statement of Lemma 4, for appropriate values of f, g, and h, and letting $\tau = \tau_{\text{fwd}} - \tau_{\text{bkwd}}$. At $\omega = 1$, we have

$$p(1) = \alpha \lambda (1 - \gamma)$$

and

$$p'(1) = \alpha \lambda + 1 - \gamma,$$

both of which are independent of the sensitivity parameter Δ. On the other hand, the second derivative is

$$p''(1) = 2\tau_{\text{fwd}}(1 - \gamma) + 2 - \alpha \Delta (\tau_{\text{fwd}} - \tau_{\text{bkwd}})(1 + \gamma - (1 - \gamma)(\tau_{\text{fwd}} - \tau_{\text{bkwd}})).$$

From here, notice that the Δ term drops out of this expression if we set γ such that

$$0 = 1 + \gamma - (1 - \gamma)(\tau_{\text{fwd}} - \tau_{\text{bkwd}});$$

this occurs when

$$\gamma = 1 - \frac{2}{\tau_{\text{fwd}} - \tau_{\text{bkwd}} + 1}.$$

(14)

Also notice that in the limit of large τ, we would have

$$D = \gamma^{\tau_{\text{fwd}} - \tau_{\text{bkwd}}}$$

$$= \left(1 - \frac{2}{\tau_{\text{fwd}} - \tau_{\text{bkwd}} + 1}\right)^{\tau_{\text{fwd}} - \tau_{\text{bkwd}}} \approx \exp(-2).$$

This motivates our use of D nearby 0.135.

In Section 3.2, we also claimed that using T2 with the assignment in (14) seems to increase the allowable range over which the system is stable. In experiments on the quadratic model, we observed that this happens consistently for all values of $\Delta > 0$ and for all τ_{fwd} and τ_{bkwd} we tried. We tried all values of $\tau_{\text{fwd}} > \tau_{\text{bkwd}}$ where $\tau_{\text{fwd}} \leq 40$ and values of Δ ranging from -100 to 100; this range of τ covers the entire range of delays present in our DNN training experiments. While the improvement seems to happen always for $\Delta \geq 0$, if $\Delta < 0$ we have observed (again only in numerical experiments) that T2 does not necessarily improve the threshold of stability for all values of Δ. This is illustrated in Figure 10, which shows what happens for the particular case of $\tau_{\text{fwd}} = 40$ and $\tau_{\text{bkwd}} = 10$. This figure is generally representative of what happens the cases we tried: the T2 correction makes the range of stable α consistently bigger when $\Delta \geq 0$, while occasionally having a negative effect when $\Delta \leq 0$.

C Supplementary Material for Section 4

In this section, we discuss the setup details and additional experiment results. We first discuss the setup of each task we consider and the hyperparameter configuration of PipeMare in Appendix C.1. We then present experiment results in addition to the performance and ablation study in Section 4.
We present the details in setup for each task we consider as well as in the hyperparameter configurations for PipeMare.

ResNet experiments. We use a publicly available implementation\(^1\) of ResNet for CIFAR10 which is reported to have good performance on CIFAR. We inherit the hyperparameters from the code repository except the initial learning rate. As the test accuracy associated with the provided learning rate does not reach 94.0, we search it with grid \(\{0.001, 0.01, 0.1\}\) to ensure the strong performance of synchronous baselines. We then uniformly apply the optimal value 0.01 to all the synchronous and asynchronous pipeline-parallel training. For the ImageNet experiment, we fully inherit the model and training configurations from the official PyTorch implementation.\(^4\) For both the CIFAR10 and ImageNet dataset, we use the standard train/validation/test dataset split in the Python Torchvision library. We present the detailed model hyperparameters and training configuration in Table 6.

Transformer experiments. We use the Fairseq implementation for 12-layer transformer models and inherit the key hyperparameters from the Fairseq repository.\(^3\) We use \(2\times\) longer learning rate linear warmup steps than in the original code repository across experiments because we observe \(2\times\) linear warmup steps can produce higher BLEU scores for both the synchronous and asynchronous runs. For both the IWSLT14 and WMT17 German to English dataset, we use beam width 5 to evaluate the BLEU score. We present the other hyperparameters in Table 7 for reproducibility.

Table 6. Training hyperparameters for ResNet 50 on CIFAR10 and ImageNet.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR10</th>
<th>ImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizer</td>
<td>SGD with Momentum</td>
<td></td>
</tr>
<tr>
<td>Initial learning rate (\alpha)</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>Learning rate drop interval (epochs)</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Learning rate drop factor</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Momentum</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Training epochs</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>L2 regularization</td>
<td>0.0005</td>
<td>0.0001</td>
</tr>
<tr>
<td>Minibatch size</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>Microbatch size</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 7. Training hyperparameters for the Transformer on IWSLT and WMT. Here, “LR” stands for learning rate.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>IWSLT</th>
<th>WMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimizer</td>
<td>AdamW</td>
<td></td>
</tr>
<tr>
<td>Max learning rate</td>
<td>(5 \times 10^{-4})</td>
<td>(7 \times 10^{-4})</td>
</tr>
<tr>
<td>Label smoothing</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Dropout</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Weight decay</td>
<td>(1 \times 10^{-4})</td>
<td>0</td>
</tr>
<tr>
<td>LR linear warmup minibatches</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td>Initial LR for linear warmup</td>
<td>(1 \times 10^{-7})</td>
<td>(0.9, 0.98)</td>
</tr>
<tr>
<td>Adam 3s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training epochs</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>Minibatch size (average # of tokens)</td>
<td>3600</td>
<td>29000</td>
</tr>
<tr>
<td>Microbatch size (max # of tokens)</td>
<td>245</td>
<td>1792</td>
</tr>
<tr>
<td># of microbatches</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Gradient norm clipping threshold</td>
<td>25</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note for CIFAR10, we found that warmup epochs do not further improve the statistical efficiency; we thus use 0 warmup epochs to attain the best performance on CIFAR10. To avoid the intensive computational overhead of tuning ImageNet and WMT, we transfer the three key hyperparameters of PipeMare from CIFAR10 and IWSLT14 experiments, we sweep the annealing epochs, the decay and the number of epochs sequentially. When sweep each of these parameters, we first anchor on the optimal values of the already sweeped hyperparameters. We then re-sweep the number of annealing epochs after sweeping the grid for the decay and the number of warmup epochs; we observe this re-sweep on the number of annealing epochs can improve the model accuracy attained by PipeMare on IWSLT14. Note for each hyperparameter configuration, we report the model accuracy as the best performance across all training epochs.

In Table 8, we present the hyperparameter grid we use as well as the optimal values (in bold) when sequentially sweeping the hyperparameters for CIFAR10 and IWSLT14 in Section 4. Note for CIFAR10, we found that warmup epochs do not further improve the statistical efficiency; we thus use 0 warmup epochs to attain the best performance on CIFAR10. To avoid the intensive computational overhead of tuning ImageNet and WMT, we transfer the three key hyperparameters of PipeMare from CIFAR10 and IWSLT with minimal search centered around them. Specifically, for ImageNet we use the same discrepancy correction as CIFAR10 and 10 epochs (one third of total epochs before base learning rate decayed by 10, note CIFAR10 uses 20 epochs, which is a quarter of the total epochs before learning rate decay) as annealing epochs. For WMT we used the same discrepancy correction as IWSLT and 4 epochs (16k minibatch steps, while IWSLT14 uses 12k minibatch steps) for synchronous warmup and another 4 epochs for annealing (IWSLT14 uses same epochs for synchronous warmup and annealing epochs as well). Following the optimal hy-

\(^1\)https://github.com/kuangliu/pytorch-cifar

\(^2\)https://pytorch.org/

\(^3\)Fairseq repo: https://github.com/pytorch/fairseq

\(^4\)https://pytorch.org
In Section 4.3, we discuss supplementary results for PipeMare ablation study ImageNet and WMT dataset in Appendix C.2.2. We then present the additional experiment results in addition to the demonstration in Section 4. We discuss the results on ImageNet and WMT dataset in Appendix C.2.1. We then discuss supplementary results for PipeMare ablation study in Appendix C.2.2.

C.2.1 ImageNet and WMT results

In Section 4.2, we discussed the end-to-end comparison on the ImageNet and WMT dataset. To better compare the statistical and hardware efficiency across pipeline training methods, we visualize the model accuracy as a function of number of epochs and of normalized time in Figure 11. For the ImageNet dataset, we can observe in Figure 11 that PipeMare attains higher test accuracy than PipeDream. For the WMT dataset in Figure 11, PipeMare can attain competitive test BLEU score to GPipe synchronous results.

We empirically demonstrate the sensitivity of model accuracy to the three key hyperparameters in PipeMare.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Hyperparameters</th>
<th>Tuning grid</th>
<th>Retuning grid for # of annealing epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR10</td>
<td>Number of annealing epochs (PipeMare T1)</td>
<td>{10, 20, 40, 80, 160}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Discrepancy correction decay (PipeMare T1 + T2)</td>
<td>{0.1, 0.5, 0.9}</td>
<td>{10, 20, 40}</td>
</tr>
<tr>
<td>IWSLT14</td>
<td>Number of annealing epochs (PipeMare T1)</td>
<td>{15, 30, 60}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Discrepancy correction decay (PipeMare T1 + T2)</td>
<td>{0.01, 0.1, 0.2}</td>
<td>{15, 20, 30}</td>
</tr>
<tr>
<td></td>
<td>Warmup epochs (PipeMare T1 + T2 + W)</td>
<td>{3.5, 10}</td>
<td>{1, 10, 20}</td>
</tr>
</tbody>
</table>

Table 8. Hyperparameter sweep for PipeMare to demonstrate the best model accuracy attained by PipeMare. We sweep the number of annealing epochs, the discrepancy correction decay and the number of warmup epochs sequentially. For each hyperparameter, we first sweep it with optimal values for previously swept hyperparameters if there are any. After we tune the decay and number of warmup epochs, we also re-sweep the number of annealing epochs; we found this re-sweep can be important to model accuracy in cases such as PipeMare T1 + T2 + W for IWSLT. We use 0 warmup epochs for CIFAR10 as we found warmup epochs does not improve the model accuracy. We bold the hyperparameter values attaining the best model accuracy in each grid.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>ImageNet</th>
<th>WMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync warmup epochs</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Discrepancy correction</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Annealing epochs</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 9. PipeMare hyperparameters on the ImageNet and WMT dataset.

Asynchronous Pipeline Parallel DNN Training

Discrepancy correction can also contribute to preventing divergence for models with larger number of stages. More concretely, in Figure 12, we show that PipeMare T1 (only with learning rate rescheduling) diverge for ResNet 152 on CIFAR10 with 150 pipeline stages. By additionally applying discrepancy correction, we observe that PipeMare converges and achieve matching test accuracy to GPipe training in a fixed number of epochs after the first learning rate drop after 80 epochs.

C.2.3 Hyperparameter sensitivity studies

We empirically demonstrate the sensitivity of model accuracy to the three key hyperparameters in PipeMare.

Sensitivity to annealing epochs

One key hyperparameter for improving convergence using Heuristic 1 is the number of annealing epochs \(K\). We further study here the sensitivity of model accuracy (loss) with respect to the number of annealing epochs in ResNet and Transformer model. As shown in Figure 13, we observe that different model may require a different number of annealing epochs for optimal test performance. Specifically, we can see that the ResNet and Transformer model prefers small and large number of annealing epochs respectively.

Sensitivity to correction decay

A right choice of correction decay is important to stabilizing the training and speed up the convergence. As shown in Figure 14, a proper correction decay \(D(\leq 0.2)\) can speed up the convergence of Transformer while an improper \(D\) can result in even worse result than those without corrections. In other words, simply reusing the momentum buffer in SGD updates for correcting the parameters during backward could not fulfill the purpose of approximating the parameters used during forward. Therefore, an extra memory buffer and accumulation \(\gamma\) is needed for each stage, which adds additional 25-33% of memory to the total weight memory (e.g., in Adam, we have master weight, gradient, momentum, and norm, to-
Figure 11. The statistical performance and normalized time attained by different pipeline training methods on ImageNet (left) and WMT (right). We observe PipeMare(W) can attain higher model accuracy for both ImageNet and WMT than PipeDream, while being competitive to GPipe in the same number of epochs. On WMT PipeDream fails to converge and attains BLEU score close to 0 while PipeMareW achieves state-of-art BLEU score. On ImageNet PipeMare outperforms PipeDream in terms of convergence speed while PipeMareW attains state-of-the-art accuracy (which PipeDream and PipeMare do not).
Figure 12. We observe ResNet 152 on CIFAR20 diverges when only using learning rate rescheduling (T1). Discrepancy correction is necessary to prevent divergence for ResNet 152 on CIFAR10; we observe PipeMare with discrepancy correction (T1 + T2) attains matching performance to GPipe synchronous training.

Sensitivity to warmup epochs. In Figure 15, we show the impact of different numbers of synchronous warmup training epochs on PipeMare’s convergence. This exposes a tradeoff between statistical efficiency and hardware efficiency. More synchronous warmup epochs lower the overall pipeline utilization (and therefore throughput) but often help statistical convergence.

D STATISTICAL EFFICIENCY AND RECOMPUTE

In pipeline-parallel training, to compute the gradient in a pipelined fashion, the activation memory needs to be stored for each batch of data at every pipeline stage. For fine-grained pipeline-parallel training, this can result in significantly increased memory footprint. To reduce the memory incurred by activations, the activation recomputation technique (Chen et al., 2016a; Huang et al., 2018) has been proposed for training deep neural networks. We first discuss the recomputation model in asynchronous pipeline-parallel training in appendix D.1. We then demonstrate in appendix D.2 that PipeMare with recomputation can attain matching / competitive model accuracy while using less memory footprint comparing to PipeMare without recomputation.

D.1 Asynchronous pipeline-parallel recomputation

When running with asynchronous pipeline parallelism, adding recompute adds additional delay paths to the computation, since now the backward pass depends not only on a single delayed weight value but also on delayed recomputed activations, each of which may have a different delay from the delay used for the backward-pass weights. We can model this formally as

\[w_{t+1} = w_t - \alpha \nabla f_t(u_{fwd,t}, u_{bkwd,t}, u_{recomp,t}) \]

where now \(u_{recomp,t} \) denotes the delayed version of the weights used for recomputing activations in the backward pass for the \(t \)th gradient microbatch. Just as for the other delayed weights, we define this in terms of a fixed delay as

\[(u_{recomp,t})_i = (w_t - \tau_{recomp,i})_i \]

where now \(\tau_{recomp,i} \) is a fixed delay that affects weights used for recomputation in the \(i \)th operator. Given this definition, there is a natural way we can extend the discrepancy correction of T2 to apply to these new recomputed activations.

T2 for Recompute: Instead of the assignment of \(u_{recomp} \) above, set

\[(u_{recomp,t})_i = (w_t - \tau_{recomp,i})_i - (\tau_{fwd,i} - \tau_{recomp,i}) \delta_{t,i}, \]

where \(\delta_{t,i} \) is the same weight-trajectory accumulator used to correct \(u_{bkwd,i} \) in T2.

The theory. To model delay discrepancy with recomputation in the quadratic model, we now assume gradient samples of the form

\[\nabla f_t(u_{fwd,t}, u_{bkwd,t}) = (\lambda + \Delta) \cdot w_t - \tau_{fwd} - \Delta \cdot \Phi \cdot w_t - \tau_{bkwd} - \Phi \cdot w_t - \tau_{recomp} - \eta_t \]

where \(\tau_{fwd} > \tau_{recomp} > \tau_{bkwd} \) are now three different delays, and \(\Phi \) is now a constant that measures the sensitivity of the gradients to discrepancy between the recomputed weights and the backward-pass weights. As before, we can think of this as the natural first-order (linear) approximation of \(\nabla f_t \); it can model any affine function of \(u_{fwd,t}, u_{bkwd,t} \), and \(u_{recomp,t} \) that is consistent with the curvature \(\lambda \) when \(u_{fwd,t} = u_{bkwd,t} \). If \(\Phi = 0 \), we recover our original no-recomputation setting, whereas for large-magnitude values of \(\Phi \), even a small delay discrepancy in recomputation could cause a large effect on the gradient samples.

It is straightforward to see that the characteristic polynomial of the companion matrix here will be

\[p(\omega) = (\omega - 1)(\omega - \gamma)\omega^{\tau_{fwd}} + \alpha(\lambda + \Delta)(\omega - \gamma) - \alpha(\Delta - \Phi)\omega^{\tau_{fwd} - \tau_{bkwd}}(\omega - \gamma) + \alpha(\Delta - \Phi)\omega^{\tau_{fwd} - \tau_{recomp}}(\tau_{fwd} - \tau_{bkwd})(1 - \gamma)\omega - 1 - \alpha\Phi\omega^{\tau_{fwd} - \tau_{recomp}}(\omega - \gamma) + \alpha\Phi\omega^{\tau_{fwd} - \tau_{recomp}}(\tau_{fwd} - \tau_{recomp})(1 - \gamma)(\omega - 1). \]
Figure 13. Sensitivity of model accuracy to the number of annealing epochs. We observe that choosing the number of annealing epochs can be important to achieving model accuracy matching synchronous training.

Figure 14. Sensitivity of model accuracy to the decay D for discrepancy correction. We notice that the decay value can have an impact on the convergence speed. For example, it requires a decay smaller than 0.5 to converge faster than without discrepancy correction while 0.5 can demonstrate test accuracy matching that attained by synchronous training.

Figure 15. Sensitivity of model accuracy to the number of synchronous warmup epochs on IWSLT. We observe a tradeoff in using warmup epochs: a large number of warmup epochs can harm the throughput but converges to a good model accuracy in fewer epochs.

Figure 16. Effect of discrepancy correction on the quadratic model when recompute is used for a model with $\Delta = 10$, $\Phi = -5$, $\tau_{fwd} = 10$, $\tau_{bkwrd} = 1$, $\tau_{recomp} = 4$, and $\lambda = 1$. Forward-backward delay discrepancy (blue) increases the largest magnitude eigenvalue of the companion matrix, just as in the no-recompute case (green). Discrepancy correction with $D = 0.1$ (red) reduces the largest magnitude eigenvalue; this eigenvalue is closer to that attained without delay discrepancy (orange).
While the complexity of this polynomial makes it difficult to prove a tight result like Lemma 1, we can still analyze its spectral radius empirically, as we did for the non-recompute case in the main body of the paper. Figure 16 shows this analysis. Here we see that, just as in the case without recompute, delay discrepancy correction increases the range of step sizes over which the quadratic model is stable, and brings the behavior of the model closer to the no-delay-discrepancy case.

D.2 Statistical efficiency and recompute

To study the impact of recompute over statistical efficiency, we study the model accuracy attained by PipeMare with recompute on CIFAR10 and IWSLT. We observe that 1) as discussed in Appendix D.1, discrepancy correction can be important to the stability of asynchronous training with recompute; 2) with different number of gradient checkpoints for recompute, PipeMare in general attains competitive or matching model accuracy to that attained by PipeMare without recompute. This indicates that recompute can significantly save the memory for storing activations with minimal influence on the attained model accuracy.

Importance of discrepancy correction. In Figure 17 and Figure 18, we plot the model accuracy attained by PipeMare with recompute using different number of gradient checkpoints on CIFAR10 and IWSLT. For the CIFAR10 case in Figure 17, using recompute does not affect the model accuracy attained with discrepancy correction (PipeMare T1 + T2) and without discrepancy correction (PipeMare T1). However for the IWSLT case in Figure 18, without discrepancy correction (PipeMare T1), training with recompute in the asynchronous setting can be unstable. E.g. training with 2 gradient checkpoints fails to attain BLEU higher than 10.0 while it diverge in the middle of training for 12 gradient checkpoints. When we apply the discrepancy correction in the middle and right plot of Figure 18, we can observe that PipeMare with different number of gradient checkpoints can achieve matching model accuracy to training without recompute. These observations indicate that discrepancy correction is important to the stability of training with recompute.

Statistical efficiency with recomputation. In Figure 17 (right) and Figure 18 (middle, right), we can see that with discrepancy correction, PipeMare asynchronous pipeline-parallel training can consistently attain strong model accuracy on both CIFAR10 and IWSLT. This further emphasizes that PipeMare can be orthogonally combined with recompute to attain strong model accuracy with significantly reduced activation memory footprint.

E HOGWILD! ASYNCHRONY

Asynchrony has been studied in various settings to accelerate the training of machine learning models (Recht et al., 2011a; Kurth et al., 2017). We ask the question of whether our proposed heuristic can go beyond the asynchronous pipeline setting with fixed gradient delay pattern, and accelerate training in classical asynchronous settings with stochastic gradient delay. In this section, we show that our learning rate rescheduling heuristic can also improve the model accuracy attained by training under the Hogwild!-style stochastic asynchrony (Recht et al., 2011a; De Sa et al., 2015). We first discuss the Hogwild!-style stochastic asynchrony model and then dive into the detailed experiment results.

Stochastic asynchrony model Hogwild!-style asynchrony considers a setting where the model is updated with a staled gradient. Specifically, the update of SGD algorithm over an objective function \(f(w) \) can be written as

\[
 w_{t+1} = w_t - \alpha \nabla f_{t-\tau}(w_{t-\tau}) \tag{15}
\]

where \(w_t \in \mathbb{R}^d \) is the model iterate while \(\nabla f_t(W_t) \) is the stochastic estimate of the gradient \(\nabla f(w_t) \) at time step \(t \). The \(\tau_t \) here is a random variable describing the delay.
PipeMare: Asynchronous Pipeline Parallel DNN Training

Figure 18. The statistical performance of recompute with different number gradient checkpoints on IWSLT. We observed in the left plot that when only using learning rate rescheduling (T1) without discrepancy correction, recompute can unstable training with 2 and 12 gradient checkpoints. After applying discrepancy correction (T2) in the middle and right plots, we observe that with different number of gradient checkpoints, PipeMare with recompute can match the model accuracy attained by PipeMare without recompute. This indicates the importance of discrepancy correction to attaining stable recompute in PipeMare.

of the gradient; this random variable can model the delay of gradients due to the network transmission in distributed asynchronous training (Kurth et al., 2017) or asynchronous model update in the shared memory settings (Recht et al., 2011a).

We consider a variant of the original Hogwild!-style asynchrony model with different delays for different stages; this stage specific gradient delay setting is studied in our fixed delay asynchronous pipeline training in Section 3. In particular, the model update for each stage can be characterized by

$$w_{i,t+1} = w_{i,t} - \alpha \left[\nabla f_{t-\tau_i}(w_{i-\tau_i}) \right]_i$$

(16)

where τ_i is the stochastic gradient delay for the i-th stage and $\left[\nabla f_{t}(w_{i-\tau_i}) \right]_i$ describes the gradient dimensions corresponding to the i-th stage.

In our variant of the Hogwild!-style gradient delay τ_i, we sample from truncated exponential distributions following the existing study in asynchronous training (Mitliagkas et al., 2016); this truncated exponential distribution is the maximum entropy distribution. We use the exponential distribution truncated at τ_{max} uniformly for different stages to make sure we have bounded delay of the gradient. To model the different level of gradient delay for different stages, we use sampling distributions with different expectation values.

Evaluation results To demonstrate that our learning rate rescheduling rule can also improve the model accuracy for training under Hogwild!-style asynchrony, we evaluate with the ResNet50 model on the CIFAR10 dataset and the Transformer model on the IWSLT14 German to English translation task. In our experiment, we use the maximal number of stages with at least one model weight in each group, which is also used in our pipeline training experiments in Section 4.3. Specifically, we use 107 and 93 stages for the ResNet and Transformer model respectively. We thus also inherit the optimal configuration for annealing epochs from the experiment on PipeMare only with learning rate rescheduling (PipeMare T1) in Section 4.3. As shown in Figure 19, we can observe that asynchronous training without learning rate rescheduling attains 94.51% test accuracy and test BLEU score 3.6 respectively for ResNet and Transformer. By applying learning rate rescheduling as described in Section 3.1, we improve the test accuracy to 94.80% and test BLEU score 33.8 for asynchronous pipeline-parallel training for the ResNet and Transformer model. These observations indicates that our learning rate rescheduling heuristics can also improve the test performance of training under Hogwild!-style asynchrony.

Figure 19. Test performance of CIFAR10 ResNet (left) and IWSLT14 Transformer (right) under the Hogwild!-style asynchronous training. By using the learning rate rescheduling heuristic for asynchronous training, we can achieve test performance matching those attained by synchronous training. Comparing to asynchronous training without learning rate rescheduling, applying the rescheduling heuristic can attain better test performance after the same number of training epochs.