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CONTINUOUS INTEGRATION OF MACHINE LEARNING MODELS: A
RIGOROUS YET PRACTICAL TREATMENT

Anonymous Authors1

ABSTRACT
Continuous integration is an indispensable step of modern software engineering practices to systematically
manage the life cycles of system development. Developing a machine learning model is no difference — it is an
engineering process with a life cycle, including design, implementation, tuning, testing, and deployment. However,
most, if not all, existing continuous integration engines do not support machine learning as first-class citizens.

In this paper, we present systemX/ci, to our best knowledge, the first continuous integration system for
machine learning. The challenge of building systemX/ci is to provide rigorous strong guarantees, e.g., single
accuracy point error tolerance with 0.999 reliability, with a practical amount of labeling effort, e.g., 2K labels
per test. We design a domain specific language that allows users to specify integration conditions with reliability
constraints, and develop simple novel optimizations that can lower the number of samples required by up to two
orders of magnitude for test conditions popularly used in real production systems.

1 INTRODUCTION

In modern software engineering, continuous integration (CI)
is an important part of the best practice to systematically
manage the life cycle of the development efforts. With
a CI engine, the practice requires developers to integrate
(i.e., commit) their code into a shared repository at least
once a day. Each commit triggers an automatic build of
the code, followed by running a pre-defined test suite. The
developer receives a pass/fail signal from each commit,
which guarantees that every commit that receives a pass
signal satisfies all properties that are necessary for product
deployment and/or presumed by downstream software.

Developing machine learning models is no different from
developing traditional software, in the sense that it is also
a full life cycle involving design, implementation, tuning,
testing, and deployment. As machine learning models are
used in more task-critical applications and are more tightly
integrated with traditional software stacks, it becomes in-
creasingly important for the ML development life cycle also
to be managed following systematic, rigid engineering disci-
pline. We believe that developing the theoretical and system
foundation for such a life cycle management system will be
an emerging topic for the SysML community.
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- script     : ./test_model.py
- condition  : n - o > 0.02 +/- 0.01
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Figure 1. The workflow of systemX/ci.

In this paper, we take the first step towards building, to our
best knowledge, the first continuous integration system for
machine learning. The workflow of the system largely fol-
lows the traditional CI systems (Figure 1), while it allows
the user to define machine-learning specific test conditions
such as the new model can only change at most 10% predic-
tions of the old model or the new model must have at least
1% higher accuracy than the old model. After each commit
of a machine learning model/program, the system automat-
ically tests whether these test conditions hold, and return
a pass/fail signal to the developer. Unlike traditional
CI, CI for machine learning is inherently probabilistic. As
a result, all test conditions are evaluated with respect to a
(ε, δ)-reliability requirement from the user, where 1−δ (e.g.,
0.9999) is the probability of a valid test and ε is the error
tolerance (i.e., the length of the (1− δ)-confidence interval).
The goal of the CI engine is to return the pass/fail signal
that satisfies the (ε, δ)-reliability requirement.
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(Technical Challenge: Practicality) At the first glance of
the problem, there seems to exist a trivial implementation:
For one committed model, draw N labeled data points from
the testset, get an (ε, δ)-estimate of the accuracy of the new
model, and test whether it satisfies the test conditions or not.
The challenge of this strategy is the practicality associated
with the label complexity (i.e., how large N is). To get an
(ε = 0.01, δ = 1 − 0.9999) estimate of a random variable
ranging in [0, 1], if we simply apply Hoeffding’s inequality,
we need more than 46K labels from the user (similarly, 63K
labels for 32 models in a non-adaptive fashion and 156K
labels in a fully adaptive fashion)! The technical contribu-
tion of this work is a collection of techniques that lower the
number of samples, by up to two orders of magnitude, that
the system requires to achieve the same reliability.

In this paper, we make contributions from both the system
and machine learning perspectives.

1. System Contributions. We propose a novel system
architecture to support a new functionality compensat-
ing state-of-the-art ML systems. Specifically, rather
than allowing users to compose adhoc, free-style test
conditions, we design a domain specific language that
is more restrictive but expressive enough to capture
many test conditions of practical interest.

2. Machine Learning Contributions. On the machine
learning side, we develop simple, but novel, optimiza-
tion techniques to optimize for test conditions that can
be expressed within the domain-specific language that
we designed. Our techniques cover different modes of
interaction (fully adaptive, non-adaptive, and hybrid),
as well as most popular test conditions that industrial
and academic partners found useful. For a subset of
test conditions, we are able to achieve up to two orders
of magnitude savings on the number of labels that the
system requires.

Beyond these specific technical contributions, conceptually,
this work illustrates that enforcing and monitoring an ML
development life cycle in a rigorous way does not need to be
expensive. Therefore, ML systems in the near future could
afford to support more sophisticated monitoring functional-
ity to enforce the “right behavior” from the developer. This
work is one of the early steps in this direction.

In the rest of this paper, we start by presenting the design
of systemX/ci in Section 2. We then develop estimation
techniques that can lead to strong probabilistic guarantees
using test datasets with moderate labeling effort. We present
the basic implementation in Section 3 and more advanced
optimizations in Section 4. We further verify the correctness
and effectiveness of our estimation techniques via an exper-
imental evaluation (Section 5). We discuss related work in
Section 6 and conclude in Section 7.

2 SYSTEM DESIGN
We present the design of systemX/ci in this section. We
start by presenting the interaction model and workflow as il-
lustrated in Figure 1. We then present the scripting language
that enables user interactions in a declarative manner. We
discuss the syntax and semantics of individual elements, as
well as their physical implementations and possible exten-
sions. We end up with two system utilities, a “sample size
estimator” and a “new testset alarm,” the technical details
of which will be explored in Sections 3 and 4.

2.1 Interaction Model
systemX/ci is a continuous integration system for ma-
chine learning. It supports a four-step workflow: (1) user
describes test conditions in a test configuration script with
respect to the quality of an ML model; (2) user provides N
test examples where N is automatically calculated by the
system given the configuration script; (3) whenever devel-
oper commits/checks in an updated ML model/program, the
system triggers a build; and (4) the system tests whether the
test condition is satisfied and returns a “pass/fail” signal to
the developer. When the current testset loses its “statistical
power” due to repetitive evaluation, the system also decides
on when to request a new testset from the user. The old
testset can then be released to the developer as a validation
set used for developing new models.

We also distinguish between two teams of people: the in-
tegration team, who provides testset and sets the reliabil-
ity requirement; and the development team, who commits
new models. In practice, these two teams can be identical;
however, we make this distinction in this paper for clarity,
especially in the fully adaptive case. We call the integration
team the user and the development team the developer.

2.2 A systemX/ci Script
The goal of systemX/ci is to provide a declarative way
for users to specify requirements of a new machine learning
model in terms of a set of test cases. systemX/ci then
compiles such specifications into a practical workflow to
enable evaluation of test cases with rigorous theoretical
guarantees. We present the design of the systemX/ci
scripting language, followed by its implementation as an
extension to the .travis.yml format used by Travis CI.

Logical Data Model The core part of a systemX/ci
script is a user-specified condition for the continuous in-
tegration test. In the current version, such a condition is
specified over three variables V = {n, o, d}: (1) n, the
accuracy of the new model; (2) o, the accuracy of the old
model; and (3) d, the percentage of new predictions that are
different from the old ones (n, o, d ∈ [0, 1]).

Syntax of a Condition To specify the condition, which
will be tested by systemX/ci whenever a new model is
committed, the user makes use of the following grammar:
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c :- floating point constant
v :- n | o | d
op1 :- + | -
op2 :- *
EXP :- v | v op1 EXP | EXP op2 c

cmp :- > | <
C :- EXP cmp c +/- c

F :- C | C /\ F

F is the final condition, which is a conjunction of a set of
clauses C. Each clause is a comparison between an expres-
sion over {n, o, d} and a constant, with an error tolerance
following the symbol +/-. For example, two expressions
that we focus on optimizing can be specified as follows:

n - o > 0.02 +/- 0.01 /\ d < 0.1 +/- 0.01

in which the first clause

n - o > 0.02 +/- 0.01

requires that the new model have an accuracy that is two
points higher than the old model, with an error tolerance of
one point, whereas the clause

d < 0.1 +/- 0.01

requires that the new model can only change 10% of the old
predictions, with an error tolerance of 1%.

Semantics of Continuous Integration Tests Unlike tra-
ditional continuous integration, all three variables used in
systemX/ci, i.e., {n, o, d}, are random variables. As
a result, the evaluation of an systemX/ci condition is
inherently probabilistic. There are two additional param-
eters that the user needs to provide, which would define
the semantics of the test condition: (1) δ, the probability
with which the test process is allowed to be incorrect, which
is usually chosen to be smaller than 0.001 or 0.0001 (i.e.,
0.999 or 0.9999 success rate); and (2) mode chosen from
{fp-free, fn-free}, which specifies whether the test
is false-positive free or false-negative free. The semantics
are, with probability 1− δ, the output of systemX/ci is
free of false positives or false negatives.

The notion of false positives or false negatives is related to
the fundamental trade-off between the “type I” error and the
“type II” error in statistical hypothesis testing. Consider

x < 0.1 +/- 0.01.

Suppose that the real unknown value of x is x∗. Given an
estimator x̂, which, with probability 1 − δ, satisfies x̂ ∈
[x∗ − 0.01, x∗ + 0.01], what should be the testing outcome
of this condition? There are three cases:

1. When x̂ > 0.11, the condition should return False
because, given x∗ < 0.1, the probability of having
x̂ > 0.11 > x∗ + 0.01 is less than δ.

2. When x̂ < 0.09, the condition should return True
because, given x∗ > 0.1, the probability of having
x̂ < 0.09 < x∗ − 0.01 is less than δ.

3. When 0.09 < x̂ < 0.11, the outcome cannot be deter-
mined: Even if x̂ > 0.1, there is no way to tell whether
the real value x∗ is larger or smaller than 0.1. In this
case, the condition evaluates to Unknown.

The parameter mode allows the system to deal with the case
that the condition evaluates to Unknown. In the fp-free
mode, systemX/ci treats Unknown as False (thus re-
jects the commit) to ensure that whenever the condition eval-
uates to True using x̂, the same condition is always True
for x∗. Similarly, in the fn-free mode, systemX/ci
treats Unknown as True (thus accepts the commit). The
false positive rate (resp. false negative rate) in the fn-free
(resp. fp-free) mode is specified by the error tolerance.

Adaptive vs. Non-adaptive Integration Another promi-
nent difference between systemX/ci and traditional con-
tinuous integration system is that the statistical power of
a test dataset will decrease when the result of whether a
new model passes the continuous integration test is released
to the developer. The developer, if she wishes, can adapt
her next model to increase its probability to pass the test,
as demonstrated by the recent work on adaptive analyt-
ics (Blum & Hardt, 2015; Dwork et al., 2015). As we will
see, ensuring probabilistic guarantee in the adaptive case is
more expensive as it requires a larger testset.

systemX/ci allows the user to specify whether the test
is adaptive or not with a flag adaptivity (full, none,
firstChange):
• If the flag is set to full, systemX/ci releases

whether the new model passes the test immediately
to the developer.

• If the flag is set to none, systemX/ci accepts all
commits, however, sends the information of whether
the model really passes the test to a user-specified,
third-party, email address that the developer does not
have access to.

• If the flag is set to firstChange, systemX/ci
allows full adaptivity before the first time that the test
passes (or fails), but stops afterwards and requires a
new testset (see Section 3 for more details).

Example Scripts A systemX/ci script is implemented
as an extension to the .travis.yml file format used in
Travis CI by adding an ml section. For example,

ml:
- script : ./test_model.py
- condition : n - o > 0.02 +/- 0.01
- reliability: 0.9999
- mode : fp-free
- adaptivity : full
- steps : 32
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This script specifies a continuous test process that, with
probability larger than 0.9999, accepts the new commit only
if the new model has two points higher accuracy than the old
one. This estimation is conducted with an estimation error
within one accuracy point in a “false-positive free” manner.
The system will release the pass/fail signal immediately
to the developer, and the user expects that the given testset
will be used by at most 32 times before a new testset is
provided to the system.

Similarly, if the user wants to specify a non-adaptive inte-
gration process, she can provide a script as follows:
ml:

- script : ./test_model.py
- condition : d < 0.1 +/- 0.01
- reliability: 0.9999
- mode : fp-free
- adaptivity : none -> xx@abc.com
- steps : 32

It accepts each commit but sends the test result to the email
address xx@abc.com after each commit. The assumption
is that the developer does not have access to this email ac-
count and therefore, cannot adapt her next model according
to the pass/fail signal.

Discussion and Future Extensions The current syntax
of systemX/ci is able to capture many use cases that
our users find useful in their own development process,
including to reason about the accuracy difference between
the new and old models, and to reason about the amount of
changes in the test dataset between the new and old models.
In principle, systemX/ci can support a richer syntax. We
list some limitations of the current syntax that we believe
are interesting directions for future work.

1. Beyond accuracy: There are other important quality
metrics for machine learning that the current system
does not support, e.g., F1-score, AUC score, etc. It is
possible to extend the current system to accommodate
these scores by replacing the Bennett’s inequality with
the McDiarmid’s inequality, together with the sensitiv-
ity of F1-score and AUC score. In this new context,
more optimizations, such as using stratified samples,
are possible for skewed cases.

2. Ratio statistics: The current syntax of systemX/ci
intentionally leaves out division (“/”) and it would be
useful for a future version to enable relative compari-
son of qualities (e.g., accuracy, F1-score, etc.).

3. Order statistics: Some users think that order statistics
are also useful, e.g., to make sure the new model is
among top-5 models in the development history.

The current version of systemX/ci does not provide sup-
port for all these features. However, we believe that many
of them can be supported by developing similar statistical
techniques (see Sections 3 and 4).

2.3 System Utilities
In traditional continuous integration, the system can safely
assume that the user has the knowledge and competency
to build the test suite all by herself. This assumption is
too strong for systemX/ci— among the current users of
systemX/ci, we observe that even experienced software
engineers in large tech companies can be clueless on how
to develop a proper testset for a given reliability require-
ment. One prominent contribution of systemX/ci is a
collection of techniques that provide practical, but rigorous,
guidelines for the user to manage testsets: How large does
the testset need to be? When does the system need a new
freshly generated testset? When can the system release the
testset and “downgrade” it into a development set? While
most of these questions can be answered by experts based
on heuristics and intuition, the goal of systemX/ci is
to provide systematic, principled guidelines. To achieve
this goal, systemX/ci provides two utilities that are not
provided in systems such as Travis CI.

Sample Size Estimator This is a program that takes as
input a systemX/ci script, and outputs the number of
examples that the user needs to provide in the testset.

New Testset Alarm This subsystem is a program that takes
as input a systemX/ci script as well as the commit his-
tory of machine learning models, and produces an alarm
(e.g., by sending an email) to the user when the current
testset has been used too many times and thus cannot be
used to test the next committed model. Upon receiving the
alarm, the user needs to provide a new testset to the system
and can also release the old testset to the development team.

An impractical implementation of these two utilities is easy
— the system alarms the user to request a new testset after
every commit and estimates the testset size simply using the
Hoeffding bound. However, this can result in testsets that
require tremendous labeling effort, which is not feasible.

What is “Practical?” The practicality is certainly user
dependent. Nonetheless, from our experience working with
different users, we observe that providing 30, 000 to 60, 000
labels for every 32 model evaluations seems reasonable for
most of the users: 30, 000 to 60, 000 is what 2 to 4 engineers
can label in a day (8 hours) at a rate of 2 seconds per label,
and 32 model evaluations imply (on average) one commit
per day in a month. Under this assumption, the user only
needs to spend one day per month to provide test labels with
a reasonable number of labelers.

Therefore, to make systemX/ci a useful tool for real-
world users, these utilities need to be implemented in a more
practical way. The technical contribution of systemX/ci
is a set of techniques that we will present next, which can
reduce the number of samples the system requests from the
user by up to two orders of magnitude.
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3 BASELINE IMPLEMENTATION
We describe the techniques to implement systemX/ci for
user-specified conditions in the most general case. The tech-
niques that we use involve standard Hoeffding inequality
and a technique similar to Ladder (Blum & Hardt, 2015) in
the adaptive case. This implementation is general enough
to support all user-specified conditions currently supported
in systemX/ci, however, it can be made more practical
when the test conditions satisfy certain conditions. We leave
optimizations for specific conditions to Section 4.

3.1 Sample Size Estimator for a Single Model
Estimator for a Single Variable One building block of
systemX/ci is the estimator of the number of samples
one needs to estimate one variable (n, o, and d) to ε accuracy
with 1− δ probability. We construct this estimator using the
standard Hoeffding bound.

A sample size estimator n : V × [0, 1]3 7→ N is a function
that takes as input a variable, its dynamic range, error toler-
ance and success rate, and outputs the number of samples
one needs in a testset. With the standard Hoeffding bound,

n(v, rv, ε, δ) =
−r2v ln δ

2ε2

where rv is the dynamic range of the variable v, ε the error
tolerance, and 1− δ the success probability.

Estimator for a Single Clause Given a clause C with a
left-hand side expression Φ, a comparison operator cmp (>
or <), and a right-hand side constant, the sample size esti-
mator returns the number of samples one needs to provide
an (ε, δ)-estimation of the left-hand side expression. This
can be done with a trivial recursion:

1. n(EXP = c * v, ε, δ) = n(v, rv, ε/c, δ), where c is
a constant. We have n(c * v, ε, δ) =

−c2r2v ln δ
2ε2 .

2. n(EXP1 + EXP2, ε, δ) = max{n(EXP1, ε1,
δ
2 ),

n(EXP2, ε2,
δ
2 )}, where ε1 + ε2 < ε. The same equal-

ity holds similarly for n(EXP1 - EXP2, ε, δ).

Estimator for a Single Formula Given a formula F that
is a conjunction over k clauses C1, ..., Ck, the sample size
estimator needs to guarantee that it can satisfy each of the
clause Ci. One way to build such an estimator is

3. n(F = C1 ∧ . . . ∧ Ck, ε, δ) = maxi n(Ci, ε,
δ
k ).

Example Given a formula F , we now have a simple algo-
rithm for sample size estimation. For
F :- n - 1.1 * o > 0.01 +/- 0.01 /\ d < 0.1 +/- 0.01

the system solves an optimization problem:

n(F, ε, δ) = min
ε1+ε2=ε
ε1,ε2∈[0,1]

max{
− ln δ

4

2ε21
,
−1.12 ln δ

4

2ε22
,
− ln δ

2

2ε2
}.

3.2 Non-Adaptive Scenarios
In the non-adaptive scenario, the system evaluates H mod-
els, without releasing the result to the developer. The result
can be released to the user (the integration team).

Sample Size Estimation Estimation of sample size is
easy in this case because all H models are independent.
With probability 1− δ, systemX/ci returns the right an-
swer for each of the H models, the number of samples
one needs for formula F is simply n(F, ε, δH ). This follows
from the standard union bound. Given the number of mod-
els that user hopes to evaluate (specified in the steps field
of a systemX/ci script), the system can then return the
number of samples in the testset.

New Testset Alarm The alarm for users to provide a new
testset is easy to implement in the non-adaptive scenario.
The system maintains a counter of how many times the
testset has been used. When this counter reaches the pre-
defined budget (i.e., steps), the system requests a new
testset from the user. In the meantime, the old testset can be
released to the developer for future development process.

3.3 Fully-Adaptive Scenarios
In the fully-adaptive scenario, the system releases the test
result (a single bit indicating pass/fail) to the developer.
Because this bit leaks information from the testset to the
developer, one cannot use union bound anymore as in the
non-adaptive scenario.

A trivial strategy exists for such a case — for every model,
uses a different testset. In this case, the number of samples
we require is H · n(F, ε, δH ). This can be improved by
applying a similar adaptive argument as follows.

Sample Size Estimation For the fully adaptive scenario,
systemX/ci uses the following way to estimate the sam-
ple size for an H-step process. The intuition is simple.
Assume that a developer is deterministic or pseudo-random,
her decision on the next model only relies on all the previ-
ous pass/fail signals and the initial model H0. For H
steps, there are only 2H possible configurations of the past
pass/fail signals. As a result, one only needs to enforce
the union bound on all these 2H possibilities. Therefore, the
number of samples one needs is n(F, ε, δ

2H
).

Is the Exponential Term too Impractical? The im-
proved sample size n(F, ε, δ

2H
) is much smaller than the

one, H · n(F, ε, δH ), required by the trivial strategy. Read-
ers might worry about the dependency on H for the fully
adaptive scenario. However, for H that is not too large, e.g.,
H = 32, the above bound can still lead to practical number
of samples as the δ

2H
is within a logarithm term. As an

example, consider the following simple condition:

F :- n > 0.8 +/- 0.05.
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With H = 32, we have

n(F, ε,
δ

2H
) =

ln 2H − ln δ

2ε2
.

Take δ = 0.0001 and ε = 0.05, we have n(F, ε, δ
2H

) =
6, 279. Assuming the developer checks in the best model
everyday, this means that every month the user needs to
provide only fewer than seven thousand test samples, a
requirement that is not too crazy. However, if ε = 0.01, this
blows up to 156, 955, which is less practical. We will show
how to tighten this bound in Section 4 for a sub-family of
test conditions.

New Testset Alarm Similar to the non-adaptive scenario,
the alarm for requesting a new testset is trivial to implement
— the system requests a new testset when it reaches the pre-
defined budget. At that point, the system can release the
testset to the developer for future development.

3.4 Hybrid Scenarios
One can obtain a better bound on the number of required
samples by constraining the information being released to
the developer. Consider the following scenario:

1. If a commit fails, returns Fail to the developer;
2. If a commit passes, (1) returns Pass to the developer,

and (2) triggers the new testset alarm to request a new
testset from the developer.

Compared with the fully adaptive scenario, in this scenario,
the user provides a new testset immediately after the devel-
oper commits a model that passes the test.

Sample Size Estimation Let H be the maximum number
of steps the system supports. Because the system will re-
quest a new testset immediately after a model passes the
test, it is not really adaptive: As long as the developer con-
tinues to use the same testset, she can assume that the last
model always fails. Assume that the user is a deterministic
function that returns a new model given the past history and
past feedback (a stream of Fail), there are onlyH possible
states that we need to apply union bound. This gives us the
same bound as the non-adaptive scenario: n(F, ε, δH ).

New Testset Alarm Unlike the previous two scenarios,
the system will alarm the user whenever the model that she
provides passes the test or reaches the pre-defined budget
H , whichever comes earlier.

Discussion It might be counter-intuitive that the hybrid
scenario, which leaks information to the developer, has the
same sample size estimator as the non-adaptive case. Given
the maximum number of steps that the testset supports, H ,
the hybrid scenario cannot always finish all H steps as it
might require a new testset in H ′ � H steps. In other
words, in contrast to the fully adaptive scenario, the hybrid

scenario accommodates the leaking of information not by
adding more samples, but by decreasing the number of steps
that a testset can support.

The hybrid scenario is useful when the test is hard to pass
or fail. For example, imagine the following condition:

F :- n - o > 0.1 +/- 0.01

That is, the system only accepts commits that increase the
accuracy by 10 accuracy points. In this case, the developer
might take many developing iterations to get a model that
actually satisfies the condition.

3.5 Evaluation of a Condition
Given a testset that satisfies the number of samples given
by the sample size estimator, we obtain the estimates of the
three variables used in a clause, i.e., n̂, ô, and d̂. Simply
using these estimates to evaluate a condition might cause
both false positives and false negatives. In systemX/ci,
we instead replace the point estimates by their correspond-
ing confidence intervals, and define a simple algebra over
intervals (e.g., [a, b] + [c, d] = [a+ c, b+ d]), which is used
to evaluate the left-hand side of a single clause. A clause
still evaluates to {True, False, Unknown}. The system
then maps this three-value logic into a two-value logic given
user’s choice of either fp-free or fn-free.

3.6 Use Cases and Practicality Analysis
The baseline implementation of systemX/ci relies on
standard concentration bounds with simple, but novel, twists
to the specific use cases. Despite its simplicity, this imple-
mentation can support real-world scenarios that many of our
users find useful. We summarize five use cases and analyze
the number of samples required from the user. These use
cases are summarized from observing the requirements from
the set of users we have been supporting over the last two
years, ranging from scientists at multiple universities, to real
production applications provided by high-tech companies.
([c] and [epsilon] are placeholders for constants.)

(F1: Lower Bound Worst Case Quality)
F1 :- n > [c] +/- [epsilon]
adaptivity :- none
mode :- fn-free

This condition is used for quality control to avoid the cases
that the developer accidentally commits a model that has
an unacceptably low quality or has obvious quality bugs.
We see many use cases of this condition in non-adaptive
scenario, most of which need to be false-negative free.

(F2: Incremental Quality Improvement)
F2 :- n - o > [c] +/- [epsilon]
adaptivity :- full
mode :- fp-free
([c] is small)

This condition is used for making sure that the machine
learning application monotonically improves over time.
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1-δ ε
F1, F4 F2, F3

none full none full
0.99 0.1 404 1340 1753 5496
0.99 0.05 1615 5358 7012 21984
0.99 0.025 6457 21429 28045 87933
0.99 0.01 40355 133930 175282 549581
0.999 0.1 519 1455 2214 5957
0.999 0.05 2075 5818 8854 23826
0.999 0.025 8299 23271 35414 95302
0.999 0.01 51868 145443 221333 595633
0.9999 0.1 634 1570 2674 6417
0.9999 0.05 2536 6279 10696 25668
0.9999 0.025 10141 25113 42782 102670
0.9999 0.01 63381 156956 267385 641684
0.99999 0.1 749 1685 3135 6878
0.99999 0.05 2996 6739 12538 27510
0.99999 0.025 11983 26955 50150 110038
0.99999 0.01 74894 168469 313437 687736

Figure 2. Number of samples required by different conditions,
H = 32 steps. Red font indicates “impractical” number of samples
(see discussion on practicality in Section 2.3).

This is important when the machine learning application is
end-user facing, in which it is unacceptable for the quality to
drop. In this scenario, it makes sense for the whole process
to be fully adaptive and false-positive free.

(F3: Significant Quality Milestones)
F3 :- n - o > [c] +/- [epsilon]
adaptivity :- firstChange
mode :- fp-free
([c] is large)

This condition is used for making sure that the repository
only contains significant quality milestones (e.g., log models
after 10 points of accuracy jump). Although the condition is
syntactically the same as F2, it makes sense for the whole
process to be hybrid adaptive and false-positive free.

(F4: No Significant Changes)
F4 :- d < [c] +/- [epsilon]
adaptivity :- full | none
mode :- fn-free
([c] is large)

This condition is used for safety concerns similar to F1.
When the machine learning application is end-user facing
or part of a larger application, it is important that its predic-
tion will not change significantly between two subsequent
versions. Here, the process needs to be false-negative free.
Meanwhile, we see use cases for both fully adaptive and
non-adative scenarios.

(F5: Compositional Conditions)
F5 :- F4 /\ F2

One of the most popular test conditions is a conjunction of
two conditions, F4 and F2: The integration team wants to
use F4 and F2 together so that the end-user facing applica-
tion will not experience dramatic quality change.

Practicality Analysis How practical is it for our baseline
implementation to support these conditions, and in which
case that the baseline implementation becomes impractical?

When is the Baseline Implementation Practical? The
baseline implementation, in spite of its simplicity, is practi-
cal in many cases. Figure 2 illustrates the number of samples
the system requires for H = 32 steps. We see that, for both
F1 and F4, all adaptive strategies are practical up to 2.5
accuracy points, while for F2 and F3, the non-adaptive and
hybrid adaptive strategies are practical up to 2.5 accuracy
points and the fully adaptive strategy is only practical up to
5 accuracy points. As we see from this example, even with
a simple implementation, enforcing a rigorous guarantee
for CI of machine learning is not always expensive!

When is the Baseline Implementation Not Practical?
We can see from Figure 2 the strong dependency on ε. This
is expected because of the O(1/ε2) term in the Hoeffding
inequality. As a result, none of the adaptive strategy is
practical up to 1 accuracy point, a level of tolerance that
is important for many task-critical applications of machine
learning. It is also not surprising that the fully adaptive strat-
egy requires more samples than the non-adaptive one, and
therefore becomes impractical with higher error tolerance.

4 OPTIMIZATIONS
As we see from the previous sections, the baseline imple-
mentation of systemX/ci fails to provide a practical ap-
proach for low error tolerance and/or fully adaptive cases.
In this section, we describe optimizations that allow us to
further improve the sample size estimator.

High-level Intuition All of our proposed techniques in this
section are based on the same intuition: Tightening the sam-
ple size estimator in the worst case is hard to get better than
O(1/ε2); instead, we take the classic system way of think-
ing — improve the the sample size estimator for a sub-family
of popular test conditions. Accordingly, systemX/ci ap-
plies different optimizations for test conditions of different
forms.

Technical Observation 1 The intuition behind a tighter
sample size estimator relies on standard techniques of tight-
ening Hoeffding’s inequality for variables with small vari-
ance. Specifically, when the new model and the old model
is only different on up to (100 × p)% of the predictions,
which could be part of the test condition anyway, for data
point i, the random variable ni − oi has small variance:
E
[
(ni − oi)2

]
< p, where ni and oi are the predictions of

the new and old models on the data point i. This allows us
to apply the standard Bennett’s inequality.

Proposition 1 (Bennett’s inequality). Let X1, ..., Xn be
independent and square integrable random variables such
that for some nonnegative constant b, |Xi| ≤ b almost surely
for all i < n. We have

Pr

[∣∣∣∣∑iXi − E[Xi]

n

∣∣∣∣ > ε

]
≤ 2 exp

(
− v

b2
h

(
nbε

v

))
,
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where v =
∑
i E
[
X2
i

]
and h(u) = (1 + u) ln(1 + u)− u

for all positive u.

Technical Observation 2 The second technical observation
is that, to estimate the difference of predictions between
the new model and the old model, one does not need to
have labels. Instead, a sample from the unlabeled dataset
is enough to estimate the difference. Moreover, to estimate
n− o when only 10% data points have different predictions,
one only needs to provide labels to 10% of the whole testset.

4.1 Pattern 1: Difference-based Optimization
The first pattern that systemX/ci searches in a formula
is whether it is of the following form

d < A +/- B /\ n - o > C +/- D

which constrains the amount of changes that a new model
is allowed to have while ensuring that the new model is
no worse than the old model. These two clauses popularly
appear in test conditions from our users: For production-
level systems, developers start from an already good enough,
deployed model, and spend most of their time fine-tuning
a machine learning model. As a result, the continuous inte-
gration test must have an error tolerance as low as a single
accuracy point. On the other hand, the new model will not be
different from the old model significantly, otherwise more
engaged debugging and investigations are almost inevitable.

Assumption. One assumption of this optimization is that it
is relatively cheap to obtain unlabeled data samples, whereas
it is expensive to provide labels. This is true in many of the
applications. When this assumption is valid, both optimiza-
tions in Section 4.1.1 and Section 4.1.2 can be applied to
this pattern; otherwise, both optimizations still apply but
will lead to improvement over only a subset.

4.1.1 Hierarchical Testing
The first optimization is to test the rest of the clauses con-
ditioned on d < A +/- B, which leads to an algorithm
with two-level tests. The first level tests whether the dif-
ference between the new model and the old model is small
enough, whereas the second level tests (n− o).

The algorithm runs in two steps:

1. (Filter) Get an (ε′, δ2 )-estimator d̂ with n′ samples.
Test whether d̂ > A+ ε′: If so, returns False;

2. (Test) Test F as in the baseline implementation (with
1− δ

2 probability), conditioned on d < A+ 2ε′.

It is not hard to see why the above algorithm works — the
first step only requires unlabeled data points and does not
need human intervention. In the second step, conditioned on
d < p, we know that E

[
(ni − oi)2

]
< p for each data point.

Combined with |ni− oi| < 1, applying Bennett’s inequality

we have Pr[
∣∣∣n̂− o− (n− o)

∣∣∣ > ε] ≤ 2 exp(−nph
(
ε
p

)
).

As a result, the second step needs a sample size (for non-
adaptive scenario) of

n =
lnH − ln δ

4

ph
(
ε
p

) .

When p = 0.1, 1− δ = 0.9999, d < 0.1, we only need 29K
samples for 32 non-adaptive steps and 67K samples for 32
fully-adaptive steps to reach an error tolerance of a single
accuracy point — 10× fewer than the baseline (Figure 2).

4.1.2 Active Labeling
The previous example gives the user a way to conduct 32
fully-adaptive fine-tuning steps with only 67K samples. As-
sume that the developer performs one commit per day, this
means that we require 67K samples per month to support
the continuous integration service.

One potential challenge for this strategy is that all 67K sam-
ples need to be labeled before the continuous integration
service can start working. This is sometimes a strong as-
sumption that many users find problematic. In the ideal
case, we hope to interleave the development effort with the
labeling effort, and amortize the labeling effort over time.

The second technique our system uses relies on the observa-
tion that, to estimate (n−o), only the data points that have a
different prediction between the new and old models need to
be labeled. When we know that the new model predictions
are only different from the old model by 10%, we only need
to label 10% of all data points. It is easy to see that, every
time when the developer commits a new model, we only
need to provide

n =
− ln δ

4

ph
(
ε
p

) × p
labels. When p = 0.1 and 1− δ = 0.9999, then n = 2188
for an error tolerance of a single accuracy point. If the
developer commits one model per day, the labeling team
only needs to label 2,188 samples the next day. Given a
well designed interface that enables a labeling throughput
of 5 seconds per label, the labeling team only needs to
commit 3 hours a day! For a team with multiple engineers,
this overhead is often acceptable, considering the guarantee
provided by the system down to a single accuracy point.

4.2 Pattern 2: Implicit Variance Bound
In many cases, the user does not provide an explicit con-
straint on the difference between a new model and an old
model. However, many machine learning models are not
so different in their predictions. Take AlexNet, ResNet,
GoogLeNet, AlexNet (Batch Normalized), and VGG for
example: When applied to the ImageNet testset, these five
models, developed by the ML community since 2012, only
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Figure 3. Comparison of Sample Size Estimators in the Baseline
Implementation and the Optimized Implementation.

produce up to 25% different answers for top-1 correctness
and 15% different answers for top-5 correctness! For a typ-
ical workload of continuous integration, it is therefore not
unreasonable to expect many of the consecutive commits
would have smaller difference than these ImageNet winners
involving years of development.

Motivated by this observation, systemX/ci will automat-
ically match with the following pattern

n - o > C +/- D.

When the unlabeled testset is cheap to get, the system will
use one testset to estimate d up to ε = 2D: For binary
classification task, the system can use unlabeled testset; for
multi-class tasks, one can either test the difference of pre-
dictions on an unlabeled testset or difference of correctness
on a labeled testset. This gives us an upper bound of n− o.
The system then tests n− o up to ε = D on another testset
(different from the one used to test d). When this upper
bound is small enough, the system will trigger similar opti-
mization as in Pattern 1. Note that the first testset will
be 16× smaller than testing n− o directly up to ε = D —
4× due to a higher error tolerance, and 4× due to that d has
2× smaller range than n− o.

One caveat of this approach is that the system does not know
how large the second testset would be before execution.
The system uses a technique similar to active labeling by
incrementally growing the labeled testset every time when
a new model is committed, if necessary. Specifically, we
optimize for test conditions following the pattern

n > A +/- B,

when A is large (e.g., 0.9 or 0.95). This can be done by first
having a coarse estimation of the lower bound of n, and then
conducting a finer-grained estimation conditioned on this
lower bound. Note that this can only introduce improvement
when the lower bound is large (e.g., 0.9).

5 EXPERIMENTS

We focus on empirically validating the derived bounds and
show systemX/ci in action next.

5.1 Sample Size Estimator
One key technique most of our optimizations relied on is
that, by knowing an upper bound of the sample variance, we

Figure 4. Impact of ε, δ, and p on the Label Complexity.
are able to achieve a tighter bound than simply applying the
Hoeffding bound. This upper bound can either be achieved
by using unlabeled data points to estimate the difference
between the new and old models, or by using labeled data
points but conducting a coarse estimation first. We now
validate our theoretical bound and its impact on improving
the label complexity.

Figure 3 illustrates the estimated error and the empirical
error by assuming different upper bounds p, for a model
with accuracy around 98%. We run GoogLeNet on the
infinite MNIST dataset (Bottou, 2016) and estimate the
true accuracy c. Assuming a non-adaptive scenario, we
obtain a range of accuracies achieved by randomly taking n
data points. We then estimate the interval ε with the given
number of samples n and probability 1−δ. We see that, both
the baseline implementation and systemX/ci dominate
the empirical error, as expected, while systemX/ci uses
significantly fewer samples.1

Figure 4 illustrates the impact of this upper bound on im-
proving the label complexity. We see that, the improvement
increases significantly when p is reasonably small — when
p = 0.1, we can achieve almost 10× improvement on the
label complexity. Active labeling further increases the im-
provement, as expected, by another 10×.

5.2 systemX/ci in Action
We showcase three different test conditions with real-world
models and datasets to mimic a real continuous integration
scenario. Figure 5 illustrates three similar, but different test
conditions. The first two test conditions test whether the
new model is better than the old model in terms of top-5

1The empirical error was determined by taking different testsets
(with the sample sample size) and measuring the gap between the
δ and 1− δ quantiles over the observed testing accuracies.
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Figure 5. Continuous Integration Steps in systemX/ci.

accuracy by at least 1 or 4 percentage points, without any
false positive. The third test condition tests whether the
top-1 accuracy of the new model is at least 1 percentage
point higher than the old model, without any false neg-
ative. We take five pre-trained convolutional neural net-
works on ImageNet (Russakovsky et al., 2015), including
AlexNet, AlexNet (Batch Normalization), GoogLeNet (Jia
et al., 2014), VGG-19 (Gengenbach, 2017) and ResNet-
152 (He et al., 2015), and order them by the time they were
developed. We use ImageNet in this experiment. All three
queries were optimized by systemX/ci using Pattern 2.

Simply using Hoeffding’s inequality does not lead to a prac-
tical solution — for ε = 0.01 and δ = 0.002, in H = 4
fully adaptive steps, one would need

n >
r2v(ln 2H − ln δ

2 )

2ε2
= 193, 606

samples! As we see in Figure 5, with systemX/ci, all
three queries can be supported rigoriously with the 50K
images in the ImageNet testset, with 0.998 reliability, in
a fully adaptive manner. The first two test conditions are
able to achieve a single percentage point error tolerance.
The third query can only achieve 1.3 percentage point error
tolerance because a single percentage point error tolerance
requires slightly more than 50K images. Therefore, we
cannot accommodate it without additionally labeling new
ImageNet images. (The Hoeffding’s inequality would need
114,560 samples for 1.3 percentage point tolerance.) The
reason why top-1 query require more images than the top-5
query is that top-5 results overlap more across models. As a
result, the variance of u− o is smaller in the top-5 case.

We see that, in all three scenarios, systemX/ci returns
pass/fail signals that make intuitive sense. All past Ima-
geNet winners – AlexNet, VGG (runner up), GoogLeNet,
and ResNet – pass the test of outperforming the previous
winner by at least 1 percentage point for top-5 accuracy.
If the user could use systemX/ci, they would then be
able to swap in each new ImageNet winning model along
the timeline. When tested whether the new model is more
than 4 percentage point higher than the previous model,
GoogLeNet is the only one that passes the test. All models
also pass the false-negative free test for top-1 accuracy.

6 RELATED WORK
Continuous integration is a popular concept in software
engineering (Duvall et al., 2007). Nowadays, it is one of the
best practices that most, if not all, industrial development
efforts follow. The emerging requirement of a CI engine for
ML has been discussed informally in multiple blog posts
and forum discussions (Lara, 2017; Tran, 2017; Stojnic,
2018a; Lara, 2018; Stojnic, 2018b). However, none of these
discussions produce any rigorous solutions to testing the
quality of a machine learning model, which arguably is the
most important aspect of a CI engine for ML. This paper
is motivated by the success of CI in industry, and aims for
building the first prototype system for rigorous integration
of machine learning models.

The baseline implementation of systemX/ci builds on
intensive previous work on generalization and adaptive anal-
ysis. The non-adaptive version of the system is based on
simple concentration inequalities (Boucheron et al., 2013)
and the fully adaptive version of the system is inspired by
Ladder (Blum & Hardt, 2015). It is well-known that the
O(1/ε2) sample complexity of Hoeffding’s inequality be-
comes O(1/ε) when the variance of the random variable σ2

is of the same order of ε (Boucheron et al., 2013). In this
paper, we develop techniques to adapt the same observa-
tion to a real-world scenario (Pattern 1). The technique of
only labeling the difference between models is inspired by
disagreement-based active learning (Hanneke et al., 2014),
which illustrates the potential of taking advantage of the
overlapping structure between models to decrease labeling
complexity. In fact, the technique we develop implies that
one can achieve O(1/ε) label complexity when the overlap-
ping ratio between two models p = O(

√
ε).

Conceptually, this work is inspired by the seminal series of
work by Langford and others (Langford, 2005; Kääriäinen
& Langford, 2005) that illustrates the possibility for gene-
rialization bound to be practically tight. The goal of this
work is to build a practical system to guide the user in em-
ploying complicated statistical inequalities and techniques
to achieve practical label complexity. We hope to integrate
more statistical techniques, e.g., the numerically computed
tight testset bound (Langford, 2005), into our system.

7 CONCLUSION
We have presented systemX/ci, a continuous integra-
tion system for machine learning. It provides a declarative
scripting language that allows users to state a rich class of
test conditions with rigorous probabilistic guarantees. We
have also studied the novel practicality problem in terms of
labeling effort that is specific to testing machine learning
models. Our techniques can reduce the amount of required
testing samples by up to two orders of magnitude. We have
validated the soundness of our techniques, and showcased
their applications in real-world scenarios.
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